Abstract

We present the first optical measurement of a single nitrogenvacancy (NV) center in a three-dimensional photonic crystal. The photonic crystal, fabricated by self-assembly of polystyrene microspheres, exhibits a photonic stopband that overlaps the NV photoluminescence spectrum. A modified emission spectrum and photon antibunching were measured from the NV centers. Time-resolved fluorescence measurements revealed a 30% increase in the source lifetime. Encapsulation of single NV centers in a three-dimensional photonic crystal is a step towards controlling emission properties of a single photon source.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Alleaume, F. Treussart, J. M. Courty, and J. F. Roch, “Photon statistics characterization of a single-photon source,” New J. Phys. 6, 85 (2004).
    [Crossref]
  2. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
    [Crossref]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  4. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89 (2002).
  5. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
    [Crossref] [PubMed]
  6. T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” New J. Phys. 6, 90 (2004).
    [Crossref]
  7. V. Zwiller, T. Aichele, and O. Benson, “Quantum optics with single quantum dot devices,” New J. Phys. 6, 96 (2004).
    [Crossref]
  8. J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
    [Crossref] [PubMed]
  9. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  10. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Berlin: Springer, 2001).
  11. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
    [Crossref]
  12. S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
    [Crossref] [PubMed]
  13. Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
    [Crossref] [PubMed]
  14. S. Schietinger, M. Barth, T. Alchele, and O. Benson, “Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature,” Nano Lett. 9, 1694–1698 (2009).
    [Crossref] [PubMed]
  15. J. Vuckovic, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
    [Crossref]
  16. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
    [Crossref] [PubMed]
  17. S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
    [Crossref]
  18. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  19. S. John and T. Quang, “Localization of Superradiance near a Photonic Band-Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
    [Crossref] [PubMed]
  20. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
    [Crossref]
  21. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
    [Crossref] [PubMed]
  22. E. P. Petrov, V. N. Bogomolov, I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
    [Crossref]
  23. S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
    [Crossref]
  24. S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
    [Crossref]
  25. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
    [Crossref]
  26. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
    [Crossref] [PubMed]
  27. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132–2140 (1999).
    [Crossref]
  28. C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale,” Nano Lett.in print, DOI:10.1021/nl9017379 (2009).
    [Crossref] [PubMed]
  29. W. Winkler, M. Musso, and E. C. Kirchner, “Fourier transform Raman spectroscopic data on the fossil resin siegburgite,” J. Raman Spectrosc. 34, 157–162 (2003).
    [Crossref]
  30. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [Crossref]
  31. S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
    [Crossref]
  32. A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
    [Crossref]
  33. A. Beveratos, R. Brouri, J. P. Poizat, and P. Grangier, “Bunching and Antibunching from Single NV Color Centers in Diamond,” QCM&C Proceedings (2000).
  34. J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
    [Crossref]
  35. I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112, 7250–7254 (2008).
    [Crossref]
  36. J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
    [Crossref]

2009 (2)

S. Schietinger, M. Barth, T. Alchele, and O. Benson, “Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref] [PubMed]

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

2008 (2)

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112, 7250–7254 (2008).
[Crossref]

2007 (2)

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

2006 (1)

Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

2005 (1)

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

2004 (6)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

R. Alleaume, F. Treussart, J. M. Courty, and J. F. Roch, “Photon statistics characterization of a single-photon source,” New J. Phys. 6, 85 (2004).
[Crossref]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” New J. Phys. 6, 90 (2004).
[Crossref]

V. Zwiller, T. Aichele, and O. Benson, “Quantum optics with single quantum dot devices,” New J. Phys. 6, 96 (2004).
[Crossref]

2003 (2)

J. Vuckovic, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

W. Winkler, M. Musso, and E. C. Kirchner, “Fourier transform Raman spectroscopic data on the fossil resin siegburgite,” J. Raman Spectrosc. 34, 157–162 (2003).
[Crossref]

2002 (1)

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

2000 (3)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[Crossref]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

1999 (4)

S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
[Crossref]

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132–2140 (1999).
[Crossref]

1998 (3)

E. P. Petrov, V. N. Bogomolov, I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[Crossref]

1995 (1)

S. John and T. Quang, “Localization of Superradiance near a Photonic Band-Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[Crossref] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Aichele, T.

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” New J. Phys. 6, 90 (2004).
[Crossref]

V. Zwiller, T. Aichele, and O. Benson, “Quantum optics with single quantum dot devices,” New J. Phys. 6, 96 (2004).
[Crossref]

Alchele, T.

S. Schietinger, M. Barth, T. Alchele, and O. Benson, “Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref] [PubMed]

Alleaume, R.

R. Alleaume, F. Treussart, J. M. Courty, and J. F. Roch, “Photon statistics characterization of a single-photon source,” New J. Phys. 6, 85 (2004).
[Crossref]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Bardosova, M.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
[Crossref]

Barnard, A. S.

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale,” Nano Lett.in print, DOI:10.1021/nl9017379 (2009).
[Crossref] [PubMed]

Barth, M.

S. Schietinger, M. Barth, T. Alchele, and O. Benson, “Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref] [PubMed]

Benson, O.

S. Schietinger, M. Barth, T. Alchele, and O. Benson, “Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref] [PubMed]

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

V. Zwiller, T. Aichele, and O. Benson, “Quantum optics with single quantum dot devices,” New J. Phys. 6, 96 (2004).
[Crossref]

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” New J. Phys. 6, 90 (2004).
[Crossref]

Bertone, J. F.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132–2140 (1999).
[Crossref]

Beveratos, A.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

A. Beveratos, R. Brouri, J. P. Poizat, and P. Grangier, “Bunching and Antibunching from Single NV Color Centers in Diamond,” QCM&C Proceedings (2000).

Bissell, L. J.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Bogomolov, V. N.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

E. P. Petrov, V. N. Bogomolov, I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Boyd, R.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Bradac, C.

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale,” Nano Lett.in print, DOI:10.1021/nl9017379 (2009).
[Crossref] [PubMed]

Brouri, R.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

A. Beveratos, R. Brouri, J. P. Poizat, and P. Grangier, “Bunching and Antibunching from Single NV Color Centers in Diamond,” QCM&C Proceedings (2000).

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Bullen, C.

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

Busch, K.

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[Crossref]

Buttler, W. T.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Chin, Y. L.

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Colvin, V. L.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132–2140 (1999).
[Crossref]

Cook, A. K.

Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

Courty, J. M.

R. Alleaume, F. Treussart, J. M. Courty, and J. F. Roch, “Photon statistics characterization of a single-photon source,” New J. Phys. 6, 85 (2004).
[Crossref]

De La Rue, R. M.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[Crossref]

Domhan, M.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Evans, C. M.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Eychmueller, A. A.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

Fattal, D.

J. Vuckovic, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Fokin, A. V.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[Crossref]

Gacoin, T.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

Gaebel, T.

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale,” Nano Lett.in print, DOI:10.1021/nl9017379 (2009).
[Crossref] [PubMed]

Gaponenko, S. V.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

E. P. Petrov, V. N. Bogomolov, I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Gindele, F.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Grangier, P.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

A. Beveratos, R. Brouri, J. P. Poizat, and P. Grangier, “Bunching and Antibunching from Single NV Color Centers in Diamond,” QCM&C Proceedings (2000).

Gruber, A.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Gu, M.

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

Hahn, M. A.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89 (2002).

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Hughes, R. J.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Hwang, K. S.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132–2140 (1999).
[Crossref]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Jelezko, F.

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Jia, B. H.

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

Jiang, P.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132–2140 (1999).
[Crossref]

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[Crossref]

S. John and T. Quang, “Localization of Superradiance near a Photonic Band-Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[Crossref] [PubMed]

Kalosha, I.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

E. P. Petrov, V. N. Bogomolov, I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Kapitonov, A. M.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Kirchner, E. C.

W. Winkler, M. Musso, and E. C. Kirchner, “Fourier transform Raman spectroscopic data on the fossil resin siegburgite,” J. Raman Spectrosc. 34, 157–162 (2003).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Krauss, T. D.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89 (2002).

Kuhn, S.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Kwiat, P. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lamoreaux, S. K.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

Lodahl, P.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112, 7250–7254 (2008).
[Crossref]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Lukishova, S. G.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Luther, G. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Maka, T.

S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
[Crossref]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

McGilp, J.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Menon, V. M.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Mirza, I.

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Morgan, G. L.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Muller, M.

S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
[Crossref]

Musso, M.

W. Winkler, M. Musso, and E. C. Kirchner, “Fourier transform Raman spectroscopic data on the fossil resin siegburgite,” J. Raman Spectrosc. 34, 157–162 (2003).
[Crossref]

Naidoo, N.

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale,” Nano Lett.in print, DOI:10.1021/nl9017379 (2009).
[Crossref] [PubMed]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Nikolaev, I. S.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112, 7250–7254 (2008).
[Crossref]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Nordholt, J. E.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Overgaag, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Park, Y. S.

Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

Pemble, M.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
[Crossref]

Peterson, C. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Petrov, E. P.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

E. P. Petrov, V. N. Bogomolov, I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Poizat, J. P.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

A. Beveratos, R. Brouri, J. P. Poizat, and P. Grangier, “Bunching and Antibunching from Single NV Color Centers in Diamond,” QCM&C Proceedings (2000).

Popa, I.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Povey, I. M.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
[Crossref]

Prawer, S.

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

Quang, T.

S. John and T. Quang, “Localization of Superradiance near a Photonic Band-Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[Crossref] [PubMed]

Rabeau, A.

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

Rabeau, J. R.

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale,” Nano Lett.in print, DOI:10.1021/nl9017379 (2009).
[Crossref] [PubMed]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89 (2002).

Roch, J. F.

R. Alleaume, F. Treussart, J. M. Courty, and J. F. Roch, “Photon statistics characterization of a single-photon source,” New J. Phys. 6, 85 (2004).
[Crossref]

Rogach, A. L.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

Romanov, S. G.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[Crossref]

S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
[Crossref]

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
[Crossref]

Santori, C.

J. Vuckovic, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

Schietinger, S.

S. Schietinger, M. Barth, T. Alchele, and O. Benson, “Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref] [PubMed]

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

Schroder, T.

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

Serbin, J.

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

Simmons, C. M.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Solomon, G. S.

J. Vuckovic, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

Stacey, A.

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

Stroud, C. R.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Torres, C. M. S.

S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
[Crossref]

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
[Crossref]

Treussart, F.

R. Alleaume, F. Treussart, J. M. Courty, and J. F. Roch, “Photon statistics characterization of a single-photon source,” New J. Phys. 6, 85 (2004).
[Crossref]

Valappil, N.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Vanmaekelbergh, D. L.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Vos, W. L.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112, 7250–7254 (2008).
[Crossref]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Vuckovic, J.

J. Vuckovic, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Wang, H. L.

Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Whitehead, D. E.

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
[Crossref]

Winkler, W.

W. Winkler, M. Musso, and E. C. Kirchner, “Fourier transform Raman spectroscopic data on the fossil resin siegburgite,” J. Raman Spectrosc. 34, 157–162 (2003).
[Crossref]

Woggon, U.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

Wrachtrup, J.

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Yarotsky, D. A.

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

Zaitsev, A. M.

A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Berlin: Springer, 2001).

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zentel, R.

S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

Zhou, G. Y.

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

Zimmerman, B.

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Zwiller, V.

V. Zwiller, T. Aichele, and O. Benson, “Quantum optics with single quantum dot devices,” New J. Phys. 6, 96 (2004).
[Crossref]

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” New J. Phys. 6, 90 (2004).
[Crossref]

Adv. Mater. (1)

J. F. Li, B. H. Jia, G. Y. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. 19, 3276–3280 (2007).
[Crossref]

Appl. Phys. Lett. (4)

J. R. Rabeau, Y. L. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 3 (2005).
[Crossref]

S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Photonic band-gap effects upon the light emission from a dye-polymer-opal composite,” Appl. Phys. Lett. 75, 1057–1059 (1999).
[Crossref]

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658 (2000).
[Crossref]

J. Vuckovic, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[Crossref]

Chem. Mater. (1)

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11, 2132–2140 (1999).
[Crossref]

Eur. Phys. J. D (1)

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002).
[Crossref]

J. Lightwave Tech. (1)

S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Tech. 17, 2128–2137 (1999).
[Crossref]

J. Mod. Opt. (1)

S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmerman, T. D. Krauss, C. R. Stroud, and R. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources,” J. Mod. Opt. 56, 167–174 (2009).
[Crossref]

J. Phys. Chem. C (1)

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals,” J. Phys. Chem. C 112, 7250–7254 (2008).
[Crossref]

J. Raman Spectrosc. (1)

W. Winkler, M. Musso, and E. C. Kirchner, “Fourier transform Raman spectroscopic data on the fossil resin siegburgite,” J. Raman Spectrosc. 34, 157–162 (2003).
[Crossref]

Nano Lett. (4)

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[Crossref] [PubMed]

Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

S. Schietinger, M. Barth, T. Alchele, and O. Benson, “Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref] [PubMed]

J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7, 3433–3437 (2007).
[Crossref] [PubMed]

Nature (3)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

New J. Phys. (4)

R. Alleaume, F. Treussart, J. M. Courty, and J. F. Roch, “Photon statistics characterization of a single-photon source,” New J. Phys. 6, 85 (2004).
[Crossref]

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” New J. Phys. 6, 90 (2004).
[Crossref]

V. Zwiller, T. Aichele, and O. Benson, “Quantum optics with single quantum dot devices,” New J. Phys. 6, 96 (2004).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Phys. Rev. E (1)

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
[Crossref]

Phys. Rev. Lett. (7)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John and T. Quang, “Localization of Superradiance near a Photonic Band-Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[Crossref] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89 (2002).

E. P. Petrov, V. N. Bogomolov, I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Science (1)

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Other (5)

A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Berlin: Springer, 2001).

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95, (2005).
[Crossref] [PubMed]

S. G. Romanov, M. Bardosova, D. E. Whitehead, I. M. Povey, M. Pemble, and C. M. S. Torres, “Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals,” Appl. Phys. Lett.90, (2007).
[Crossref]

A. Beveratos, R. Brouri, J. P. Poizat, and P. Grangier, “Bunching and Antibunching from Single NV Color Centers in Diamond,” QCM&C Proceedings (2000).

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and Measurement of the Size-Dependent Stability of Fluorescence in Diamond over the Entire Nanoscale,” Nano Lett.in print, DOI:10.1021/nl9017379 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of confocal fluorescence detection system, including Hanbury-Brown Twiss interferometer for measurement of photon antibunching from single photon sources. (b) SEM of top surface of opal film prior to second opal growth. Isolated diamond nanocrystals are seen as well as nanocrystal clusters.

Fig. 2.
Fig. 2.

(a) Normal incidence reflection and transmission spectra for the opal film. The grey shaded region indicates the modeled position of the photonic stopband. (b) free-space emission spectrum of an NV center (in red) and emission spectrum of NV center encapsulated in an opal (in black). The wavelength region indicated by the arrow corresponds to the broadened stopband that arises from using a high NA lens for light collection.

Fig. 3.
Fig. 3.

Normalised second-order correlation function (left axis) and coincidence counts (right axis) for an NV center within an opal. The fit is performed with the model detailed in [33]. The dashed grey line represents g (2)(0)=0.5. A value of g (2)(0) below this indicates a SPS.

Fig. 4.
Fig. 4.

Time-resolved fluorescence measurements of the NV centers inside opals. The data represented by solid circles is an average measurement of five different NV centers in an opal with a stopband positioned at 710 nm (overlapping the NV spectrum), and was found to have a lifetime of 13.3±0.8 ns. The data represented by open triangles is an average measurement of five different NV centers in an opal with a stopband positioned at 610 nm (non-overlapping), and was found to have a lifetime of 10.2±2.0 ns. The lifetime measurements were taken from NV center nanocrystals that displayed antibunching, and so contained one or few color centers. Note that the time indicated as t=0 is actually 11 ns after the excitation pulse. This removes any information from the laser pulse in the determination of the lifetime.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 dq neff2sin2θ,
neff = f nsphere + (1f)nair,

Metrics