Abstract

In this work, we successfully developed a process to fabricate dual-channel polymeric waveguide filters based on an asymmetric Bragg coupler (ABC) using holographic interference techniques, soft lithography, and micro molding. At the cross- and self-reflection Bragg wavelengths, the transmission dips of approximately –16.4 and –11.5dB relative to the 3dB background insertion loss and the 3dB transmission bandwidths of approximately 0.6 and 0.5nm were obtained from an ABC-based filter. The transmission spectrum overlaps when the effective index difference between two single waveguides is less than 0.002.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
    [CrossRef]
  2. D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
    [CrossRef]
  3. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
    [CrossRef]
  4. M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006).
    [CrossRef]
  5. F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
    [CrossRef]
  6. H. C. Tsoi, W. H. Wong, and E. Y. B. Pun,“Polymeric long-period waveguide gratings,” IEEE Photon. Technol. Lett. 15(5), 721–723 (2003).
    [CrossRef]
  7. S. Ahn and S. Shin, “Grating-assisted co-directional coupler filter using electrooptic and passive polymer waveguides,” IEEE J. Sel. Top. Quantum Electron. 7(5), 819–825 (2001).
    [CrossRef]
  8. L. Dong, L. Reekie, and J. L. Cruz, “Long period grating formed in depressed cladding fibres,” Electron. Lett. 33(22), 1897–1898 (1997).
    [CrossRef]
  9. T. M. Butler, E. Igata, S. J. Sheard, and N. Blackie, “Integrated optical Bragg-grating-based chemical sensor on a curved input edge waveguide structure,” Opt. Lett. 24(8), 525–527 (1999).
    [CrossRef]
  10. Y. O. Noh, H. J. Lee, J. J. Ju, M. S. Kim, S. H. Oh, and M. C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16, 18194–18201 (2008), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-16–22–18194.
  11. G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
    [CrossRef]
  12. J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
    [CrossRef]
  13. M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
    [CrossRef]
  14. W. C. Chuang, C. T. Ho, and W. C. Wang, “Fabrication of a high resolution periodical structure using a replication process” Opt. Express 13, 6685–6692 (2005), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-13–18–6685.
  15. W. C. Chuang, C. K. Chao, and C. T. Ho, “Fabrication of a high resolution periodical structure on polymer waveguide using a replication process” Opt. Express 15, 8649–8659 (2007), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-15–14–8648.
  16. W. C. Chuang, C. T. Ho, and W. C. Chang, “Fabrication of polymer waveguides by a replication method,” Appl. Opt. 45(32), 8304–8307 (2006).
    [CrossRef] [PubMed]
  17. J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
    [CrossRef]
  18. P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
    [CrossRef]
  19. M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
  20. M. Greenberg and M. Orenstein, “Unidirectional complex grating assisted couplers,” Opt. Express 12(17), 4013–4018 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4013 .
    [CrossRef] [PubMed]
  21. A. Yariv, Introduction to Optical Electronics, 3rd edition, (H. Rinehart & Winston, New York, 1984).

2006 (3)

M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006).
[CrossRef]

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

W. C. Chuang, C. T. Ho, and W. C. Chang, “Fabrication of polymer waveguides by a replication method,” Appl. Opt. 45(32), 8304–8307 (2006).
[CrossRef] [PubMed]

2005 (1)

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

2004 (3)

M. Greenberg and M. Orenstein, “Unidirectional complex grating assisted couplers,” Opt. Express 12(17), 4013–4018 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4013 .
[CrossRef] [PubMed]

D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
[CrossRef]

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

2003 (1)

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun,“Polymeric long-period waveguide gratings,” IEEE Photon. Technol. Lett. 15(5), 721–723 (2003).
[CrossRef]

2001 (1)

S. Ahn and S. Shin, “Grating-assisted co-directional coupler filter using electrooptic and passive polymer waveguides,” IEEE J. Sel. Top. Quantum Electron. 7(5), 819–825 (2001).
[CrossRef]

1999 (1)

1998 (3)

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
[CrossRef]

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

1997 (2)

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

L. Dong, L. Reekie, and J. L. Cruz, “Long period grating formed in depressed cladding fibres,” Electron. Lett. 33(22), 1897–1898 (1997).
[CrossRef]

1995 (1)

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

Ahn, J. H.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Ahn, S.

S. Ahn and S. Shin, “Grating-assisted co-directional coupler filter using electrooptic and passive polymer waveguides,” IEEE J. Sel. Top. Quantum Electron. 7(5), 819–825 (2001).
[CrossRef]

Albert, J.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

Bergveld, P.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

Blackie, N.

Butler, T. M.

Chang, W. C.

Cho, S. H.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Cho, S.-H.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Chuang, W. C.

Cruz, J. L.

L. Dong, L. Reekie, and J. L. Cruz, “Long period grating formed in depressed cladding fibres,” Electron. Lett. 33(22), 1897–1898 (1997).
[CrossRef]

Dainese, M.

M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006).
[CrossRef]

Daxhelet, X.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Dong, L.

L. Dong, L. Reekie, and J. L. Cruz, “Long period grating formed in depressed cladding fibres,” Electron. Lett. 33(22), 1897–1898 (1997).
[CrossRef]

Erdogan, T.

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
[CrossRef]

G. J.,

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Gauden, D.

D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
[CrossRef]

Goyat, E.

D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
[CrossRef]

Greenberg, M.

Grubsky, V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Han, S. G.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Herzig, H. P.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Hill, K. O.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

Ho, C. T.

Huser, A.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Igata, E.

Jeong, G.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

Kim, B. W.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, C. Y.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, H. G.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Kulishov, M.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Lee, H. J.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Lee, J. H.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Lee, J.-H.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Lee, M. H.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Lee, W.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Lötters, J. C.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Malo, B.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

Nussbaum, P.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Oh, M. C.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Olthuis, W.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Orenstein, M.

Park, M. Y.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Philipoussis, I.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Plant, D. V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Pun, E. Y. B.

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun,“Polymeric long-period waveguide gratings,” IEEE Photon. Technol. Lett. 15(5), 721–723 (2003).
[CrossRef]

Pureur, P.

D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
[CrossRef]

Reekie, L.

L. Dong, L. Reekie, and J. L. Cruz, “Long period grating formed in depressed cladding fibres,” Electron. Lett. 33(22), 1897–1898 (1997).
[CrossRef]

Schwartz, J.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

Sheard, S. J.

Shin, S.

S. Ahn and S. Shin, “Grating-assisted co-directional coupler filter using electrooptic and passive polymer waveguides,” IEEE J. Sel. Top. Quantum Electron. 7(5), 819–825 (2001).
[CrossRef]

Swillo, M.

M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006).
[CrossRef]

Thériault, S.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

Thylen, L.

M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006).
[CrossRef]

Tsoi, H. C.

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun,“Polymeric long-period waveguide gratings,” IEEE Photon. Technol. Lett. 15(5), 721–723 (2003).
[CrossRef]

Vaudry, C.

D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
[CrossRef]

Veltink, P. H.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Wong, W. H.

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun,“Polymeric long-period waveguide gratings,” IEEE Photon. Technol. Lett. 15(5), 721–723 (2003).
[CrossRef]

Wosinski, L.

M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006).
[CrossRef]

Yvernault, P.

D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Electron. Lett. (2)

D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004).
[CrossRef]

L. Dong, L. Reekie, and J. L. Cruz, “Long period grating formed in depressed cladding fibres,” Electron. Lett. 33(22), 1897–1898 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Ahn and S. Shin, “Grating-assisted co-directional coupler filter using electrooptic and passive polymer waveguides,” IEEE J. Sel. Top. Quantum Electron. 7(5), 819–825 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[CrossRef]

H. C. Tsoi, W. H. Wong, and E. Y. B. Pun,“Polymeric long-period waveguide gratings,” IEEE Photon. Technol. Lett. 15(5), 721–723 (2003).
[CrossRef]

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Opt. Commun. (2)

M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006).
[CrossRef]

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
[CrossRef]

Opt. Eng. (1)

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (5)

Y. O. Noh, H. J. Lee, J. J. Ju, M. S. Kim, S. H. Oh, and M. C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16, 18194–18201 (2008), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-16–22–18194.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).

W. C. Chuang, C. T. Ho, and W. C. Wang, “Fabrication of a high resolution periodical structure using a replication process” Opt. Express 13, 6685–6692 (2005), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-13–18–6685.

W. C. Chuang, C. K. Chao, and C. T. Ho, “Fabrication of a high resolution periodical structure on polymer waveguide using a replication process” Opt. Express 15, 8649–8659 (2007), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-15–14–8648.

A. Yariv, Introduction to Optical Electronics, 3rd edition, (H. Rinehart & Winston, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic diagram of a polymeric asymmetric Bragg coupler (ABC) (b) The Close-up view of the coupling/grating region directly from above

Fig. 2
Fig. 2

Fabrication process of buried gratings in polymeric waveguide filter structures: (a) UV polymer with gratings is deposited on the glass (b) The photoresist is exposed to UV light (c) The photoresist mold (d) PDMS is poured into the photoresist mold (e)The PDMS mold (f) A spacer with a thickness of 400μm is positioned (g) An OG146 precured epoxy is injected into the space (h) A hardened epoxy forms the cladding layer of the ABC filter (i) A rectangular channel is formed (j) A mixed OG epoxy is injected into the channel (k)The epoxy in the channel is then cured by exposure to UV light, and the cover glass and the PDMS layer are removed from the sample (l) A spacer with a thickness of 410μm is positioned (m) The OG146 epoxy is injected into the channel (n) The final polymeric ABC filter.

Fig. 3
Fig. 3

SEM micrograph of the waveguide pattern on the photoresist, which showed an intact grating pattern inside the groove; the SEM was tilted 4° degree (dimensions are 7.8 µm × 7 µm and 10.6 μm × 7 μm, the length is 5 cm, the gap is about 3.85 μm, and the grating period is 510nm).

Fig. 4
Fig. 4

SEM micrograph of the PDMS waveguide with gratings; the SEM was tilted 25° (the grating period is 510nm, and the grating depth is 350nm).

Fig. 5
Fig. 5

SEM and optical micrograph of the OG146 rectangular groove showing the intact grating pattern inside the groove ; the SEM was tilted 5° degree (a) SEM of sample 1 (b) OM of sample 1 (c) SEM of sample 2 (d) OM of sample 2. (for Figs. 5(a) and 5(c), dimensions are 7.5µm × 7µm and 10.4µm × 7µm, the length is 5cm, the gap is about 3.8µm, and the grating period is 510nm. For Figs. 5(b) and 5(d), dimensions are 6.7µm × 7µm and 13.8µm × 7µm, the length is 5cm, the gap is about 3.5µm, and the grating period is 510nm.).

Fig. 6
Fig. 6

(a) Fundamental mode of the single waveguide; width w = 13.8μm (b) Fundamental mode of the single waveguide; width w = 6.7μm (c) and (d) The first compound mode of the coupler structure in (d) The second compound modes of the coupler. (Sample 2).

Fig. 10
Fig. 10

Transmission spectra of an ABC filter with a 0.9cm-long grating length.

Fig. 7
Fig. 7

Schematic diagram of the mode field measurement system

Fig. 8
Fig. 8

Near-field pattern for the ABC filter of Sample 2.

Fig. 9
Fig. 9

. Optical setup for transmission spectrum measurement.

Tables (1)

Tables Icon

Table 1 The simulation and measurement results of sample 1 and sample 2

Metrics