Abstract

We present a comprehensive study of low-threshold supercontinuum generation using the large frequency-dependent enhancement of the nonlinearity in glasses doped with silver nanoparticles. We predict octave-spanning asymmetric, blue-shifted spectral broadening of fs pulses with intensity in the range of tens of GW/cm2. We also demonstrate the dependence of the spectral broadening on different physical parameters such as central operating wavelength, pulse duration, input power and the filling factor of the nanoparticles.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Phot. Rev. 2(3), 136–159 (2008).
    [CrossRef]
  2. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  3. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  4. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  5. R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett. 34(14), 2132–2134 (2009).
    [CrossRef] [PubMed]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef]
  7. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  8. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [CrossRef] [PubMed]
  9. M. Foster and A. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12(14), 3137–3143 (2004).
    [CrossRef] [PubMed]
  10. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  11. J. C. M. Garnett,“Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
    [CrossRef]
  12. G. Ghosh, M. Endo, and T. Iwasaki,“Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1997).
    [CrossRef]
  13. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  14. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [CrossRef] [PubMed]
  15. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon dissulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
    [CrossRef]
  16. R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
    [CrossRef]
  17. L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
    [CrossRef]

2009 (1)

2008 (4)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Phot. Rev. 2(3), 136–159 (2008).
[CrossRef]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[CrossRef]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

2006 (2)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2005 (2)

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon dissulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
[CrossRef]

2004 (1)

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

2000 (1)

1997 (2)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

G. Ghosh, M. Endo, and T. Iwasaki,“Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1997).
[CrossRef]

1992 (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1904 (1)

J. C. M. Garnett,“Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Phot. Rev. 2(3), 136–159 (2008).
[CrossRef]

Baba, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
[CrossRef]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Brito-Silva, A. M.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[CrossRef]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Phot. Rev. 2(3), 136–159 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Coen, S.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

de Araújo, C. B.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon dissulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
[CrossRef]

Driben, R.

Dudley, J. M.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki,“Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1997).
[CrossRef]

Falcão-Filho, E. L.

Foster, M.

Fu, L.

Gaeta, A.

Galembeck, A.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[CrossRef]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon dissulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
[CrossRef]

Garnett, J. C. M.

J. C. M. Garnett,“Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
[CrossRef]

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki,“Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1997).
[CrossRef]

Gómez, L. A.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Herrmann, J.

R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett. 34(14), 2132–2134 (2009).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Husakou, A.

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki,“Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1997).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kuroda, H.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
[CrossRef]

Lamont, M. R. E.

Mägi, E. C.

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Oliveira, M. M.

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Phot. Rev. 2(3), 136–159 (2008).
[CrossRef]

Ranka, J. K.

Roelens, M. A. F.

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Ryasnyanskii, A. I.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
[CrossRef]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Stentz, A. J.

Suzuki, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
[CrossRef]

Windeler, R. S.

Yeom, D. I.

Zarbin, A. J. G.

Appl. Phys. B (1)

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92(1), 61–66 (2008).
[CrossRef]

J. Lightwave Technol. (1)

G. Ghosh, M. Endo, and T. Iwasaki,“Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phot. Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Phot. Rev. 2(3), 136–159 (2008).
[CrossRef]

Nature (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Opt. Spectrosc. (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, “Laser Ablation of Gallium Arsenide in Different Solutions,” Opt. Spectrosc. 99(6), 1006–1011 (2005).
[CrossRef]

Philos. Trans. R. Soc. Lond. (1)

J. C. M. Garnett,“Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
[CrossRef]

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Dispersion coefficient β′′(ω) = ∂2 keff /∂ω2 of silica glass doped with silver NPs for different filling factors f.

Fig. 2
Fig. 2

(Color online) Linear loss coefficient α = Im(keff (ω)) of silica glass doped with silver NPs for different filling factors f.

Fig. 3
Fig. 3

(Color online) Real (a) and imaginary (b) part of the nonlinear coefficient n2,eff of the composite as a function of wavelength for different filling factors f.

Fig. 4
Fig. 4

(Color online) Pulse evolution in fused silica with silver NPs with filling factors f = 10−3 for 20 fs pulse with central wavelengths of 830 nm.

Fig. 5
Fig. 5

(Color online) Supercontinuum generation in fused silica with silver NPs at different wavelengths. For 20 fs pulses with an input central wavelengths of 830 nm, 1300 nm and 1550 nm and intensity of 30 GW/cm2 the spectrum are shown after the propagation of a distance of 4 μm for an input wavelengths of 830 nm and after the propagation of a distance of 6 μm for the wavelengths of 1300 nm and 1550 nm. The filling factor is f = 0.1.

Fig. 6
Fig. 6

(Color online) Spectrum for input pulses of 40 fs (solid curve) and 100 fs (dashed curve). The propagation length is 17 μm and the filling factor is f = 0.1.

Fig. 7
Fig. 7

(Color online) Spectrum (a), phase (b), and temporal shape (c) of the compressed pulse after chirp compensation by a 40-channel modulator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ3,eff=fχi|P|2P2+χh(1-f(1-0.4[4σ2|σ|2+3σ|σ|2+σ3+9|σ|2+9σ2]))(1-fσ)2|1-fσ|2,
E˜(z,ω)z=iω[neff(ω)ngc]E˜(z,ω)+iωPNL(z,ω)2neff(ω)ε0c,
PNL(z,ω)=ε0χ3,eff(ω)F˜{E(z,t)3}.

Metrics