Abstract

We report on the experimental observation of “focus splitting” when light is tightly focused into a uniaxial lithium niobate crystal along its optical axis. This effect consists in the focal spot being split into two major sub-peaks along the axial direction. For the microfabrication applications such as three-dimensional photonic crystal fabrication and waveguide writing, this effect is highly undesired since it can lead to the generation of multiple distinct voxels in the vicinity of the focus. The splitting is caused by different birefringence induced aberrations for the ordinary and extraordinary polarization eigenmodes. We present numerical simulations which support our observations and suggest methods to avoid this effect.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004) (a).
    [CrossRef]
  2. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [CrossRef]
  3. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
    [CrossRef]
  4. L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17(5), 3923–3928 (2009).
    [CrossRef] [PubMed]
  5. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33(16), 1804–1806 (2008).
    [CrossRef] [PubMed]
  6. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
    [CrossRef] [PubMed]
  7. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17(1), 87–91 (2009).
    [CrossRef] [PubMed]
  8. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
    [CrossRef]
  9. G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87(24), 241107 (2005).
    [CrossRef]
  10. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21, 1–5 (2009).
    [CrossRef]
  11. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [CrossRef]
  12. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
    [CrossRef] [PubMed]
  13. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive index mismatched media,” J. Microsc. 192(2), 90–98 (1998).
    [CrossRef]
  14. M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
    [CrossRef]
  15. P. Török, P. Varga, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995).
    [CrossRef]
  16. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  17. S. Stallinga, “Light distribution close to focus in biaxially birefringent media,” J. Opt. Soc. Am. A 21(9), 1785–1798 (2004).
    [CrossRef]

2009 (3)

2008 (1)

2007 (2)

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

2006 (4)

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
[CrossRef] [PubMed]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

2005 (2)

G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87(24), 241107 (2005).
[CrossRef]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

2004 (2)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004) (a).
[CrossRef]

S. Stallinga, “Light distribution close to focus in biaxially birefringent media,” J. Opt. Soc. Am. A 21(9), 1785–1798 (2004).
[CrossRef]

1998 (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive index mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

1995 (1)

Ancona, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004) (a).
[CrossRef]

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Bookey, H. T.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Booth, M.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Booth, M. J.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive index mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Breunig, I.

Burghoff, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Buse, K.

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Dierolf, V.

Fejer, M. M.

Garcia-Granda, M.

Gu, M.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21, 1–5 (2009).
[CrossRef]

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
[CrossRef] [PubMed]

G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87(24), 241107 (2005).
[CrossRef]

Gui, L.

Heinrich, M.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Hu, H.

Huang, D.

Ishizuki, H.

Jaque, D.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21, 1–5 (2009).
[CrossRef]

Kar, A. K.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Kawata, Y.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Kiessling, J.

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Miyata, S.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Nakabayashi, M.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Nakano, M.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive index mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Németh, G.

Nolte, S.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Osellame, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Psaila, N. D.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Ródenas, A.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21, 1–5 (2009).
[CrossRef]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Schwertner, M.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Sohler, W.

Sowade, R.

Stallinga, S.

Sun, J.

Taira, T.

Thomas, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Thomson, R. R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Török, P.

Tünnermann, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

Varga, P.

Wang, J.

Wilson, T.

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive index mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Zhang, X.

Zhou, G.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21, 1–5 (2009).
[CrossRef]

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
[CrossRef] [PubMed]

G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87(24), 241107 (2005).
[CrossRef]

Adv. Mater. (1)

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21, 1–5 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006).
[CrossRef]

G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87(24), 241107 (2005).
[CrossRef]

J. Microsc. (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive index mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Opt. Lett. (3)

Phys. Status Solidi (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004) (a).
[CrossRef]

Other (1)

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sketch of the crystalline directions; (b) Sketch of index ellipsoid of LiNbO3; (c) and (d) Confocal transmission microscopy images of voxels in LiNbO3, which resemble the corresponding intensity distributions in the focal region. (c) Writing along the Y-crystal direction, focus depths: 5 µm to 30 µm, scale bar: 5 µm (“↔” polarization). (d) Writing along the Z-crystal direction, focus depths: 5 µm to 50 µm (“↔” polarization). (e) Comparison between experimental (left) and numerical simulation (right) at 30 µm depth and Z-direction.

Fig. 2
Fig. 2

Polarization eigenmodes for focusing along Z- and Y-crystal direction (top row). The vector diagrams show the polarization profiles of transverse cross-sections through collimated beams. The corresponding phase aberration functions per micron focusing depth are shown below. Both polarization profiles and phase aberrations were calculated for our system parameters.

Fig. 3
Fig. 3

(a) Calculated axial focal intensity distributions when linearly polarized light is focused 15 µm, 30 µm and 45 µm deep into LiNbO3 along the Z-direction. The axial position is measured relative to the position of the focus without presence of the crystal, i.e. it reflects the focal shift caused by the refractive index mismatch between crystal and immersion oil. (b) Calculated axial focal intensity distributions when linearly polarized light is focused 30 µm deep into LiNbO3 along the Z- and Y-directions as well as into an isotropic medium with a refractive index of 2.2291.

Fig. 4
Fig. 4

Experimental and theoretical results of birefringence-induced focus splitting. The light beam is focussed along the Z-direction. Dashed black lines: Expected positions of the second and third voxels with respect to the first one. Thick blue lines: Observed positions of the generated the second and third voxels with respect to the first voxel. Filled markers indicate whether the second or third peak is dominant. The lines serve as a guide for the eye.

Metrics