Abstract

The polarization of the thermal radiation emitted from individual nanoheaters is investigated for nanoheaters with widths ranging from 500 nm to 2000 nm. The polarization is oriented along the long axis of the nanoheater for widths below 600 nm and rotates by 90° and becomes perpendicular for widths above 900 nm. For certain width nanoheaters the orientation of the polarization of the thermal emission can be rotated from parallel to perpendicular by changing the temperature of the nanoheater. The change in the direction of the emitted thermal radiation is explained by thermally excited transverse plasmon modes.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  2. M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
    [CrossRef]
  3. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  4. F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
    [CrossRef]
  5. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  6. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
    [CrossRef]
  7. O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
    [CrossRef]
  8. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
    [CrossRef]
  9. L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
    [CrossRef]
  10. S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
    [CrossRef] [PubMed]
  11. Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
    [CrossRef]
  12. J. M. Bennet, “Polarization” in Handbook of Optics M.Bass, eds (McGraw-Hill, New-York 1995), Chap. 5.
  13. C. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  14. M. A. Ordal, R. J. Bell, R. W. Alexander Jr, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  15. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
    [CrossRef]
  16. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B 72(11), 115308 (2005).
    [CrossRef]
  17. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  18. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
    [CrossRef] [PubMed]
  19. D. R. Ward, N. J. Halas, and D. Natelson, “Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission,” Appl. Phys. Lett. 93(21), 213108 (2008).
    [CrossRef]
  20. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006).
    [CrossRef] [PubMed]
  21. S.-Y. Yim, H.-G. Ahn, K.-C. Je, M. Choi, C. W. Park, H. Ju, and S.-H. Park, “Observation of red-shifted strong surface plasmon scattering in single Cu nanowires,” Opt. Express 15(16), 10282–10287 (2007).
    [CrossRef] [PubMed]
  22. J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express 17(15), 12849–12868 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (5)

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[CrossRef] [PubMed]

D. R. Ward, N. J. Halas, and D. Natelson, “Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission,” Appl. Phys. Lett. 93(21), 213108 (2008).
[CrossRef]

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
[CrossRef]

M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
[CrossRef]

L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

2007 (6)

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
[CrossRef]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

S.-Y. Yim, H.-G. Ahn, K.-C. Je, M. Choi, C. W. Park, H. Ju, and S.-H. Park, “Observation of red-shifted strong surface plasmon scattering in single Cu nanowires,” Opt. Express 15(16), 10282–10287 (2007).
[CrossRef] [PubMed]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B 72(11), 115308 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

2004 (1)

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

1985 (1)

Ahn, H.-G.

Alexander Jr, R. W.

Au, Y. Y.

L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

Au, Y.-Y.

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
[CrossRef]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

Bell, R. J.

Biener, G.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

Boltasseva, A.

Boreman, G. D.

Bozhevolnyi, S. I.

Carminati, R.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Cheang-Wong, J. C.

Chen, Y.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Choi, M.

Crespo-Sosa, A.

Dahan, N.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Gorodetski, Y.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

Greffet, J.-J.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Halas, N. J.

D. R. Ward, N. J. Halas, and D. Natelson, “Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission,” Appl. Phys. Lett. 93(21), 213108 (2008).
[CrossRef]

Hamann, H. F.

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
[CrossRef]

L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

Hasman, E.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

Ingvarsson, S.

L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
[CrossRef]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

Jaochowski, M.

M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
[CrossRef]

Je, K.-C.

Jones, A. C.

Joulain, K.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Ju, H.

Klein, L. J.

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
[CrossRef]

L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

Kleiner, V.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

Klevenz, M.

M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
[CrossRef]

Kollyukh, O. G.

O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
[CrossRef]

Krenz, P. M.

Lacey, J. A.

Lee, B. J.

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

Leosson, K.

Liptugaa, A. I.

O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
[CrossRef]

Long, L. L.

López-Suárez, A.

Lovrincic, R.

M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
[CrossRef]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Marquier, F.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Morozhenkoa, V.

O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
[CrossRef]

Mulet, J.-P.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Natelson, D.

D. R. Ward, N. J. Halas, and D. Natelson, “Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission,” Appl. Phys. Lett. 93(21), 213108 (2008).
[CrossRef]

Neubrech, F.

M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
[CrossRef]

Nikolajsen, T.

Niv, A.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Oliver, A.

Olmon, R. L.

Ordal, M. A.

Park, C. W.

Park, S.-H.

Pipaa, V. I.

O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
[CrossRef]

Pucci, A.

M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
[CrossRef]

Querry, M. R.

Raschke, M. B.

Reyes-Esqueda, J. A.

Rodríguez-Fernández, L.

Rodríguez-Iglesias, V.

Ruda, H. E.

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
[CrossRef]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B 72(11), 115308 (2005).
[CrossRef]

Santiago-Ramírez, A. L.

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Shik, A.

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
[CrossRef]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B 72(11), 115308 (2005).
[CrossRef]

Silva-Pereyra, H. G.

Skulason, H. S.

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
[CrossRef]

Torres-Torres, C.

Vengera, E. F.

O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
[CrossRef]

Ward, D. R.

D. R. Ward, N. J. Halas, and D. Natelson, “Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission,” Appl. Phys. Lett. 93(21), 213108 (2008).
[CrossRef]

Yim, S.-Y.

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Zhang, Z. M.

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

D. R. Ward, N. J. Halas, and D. Natelson, “Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission,” Appl. Phys. Lett. 93(21), 213108 (2008).
[CrossRef]

J. Appl. Phys. (1)

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006).
[CrossRef]

J. Heat Transfer (1)

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (4)

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[CrossRef]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B 72(11), 115308 (2005).
[CrossRef]

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Other (3)

J. M. Bennet, “Polarization” in Handbook of Optics M.Bass, eds (McGraw-Hill, New-York 1995), Chap. 5.

C. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup for measuring the polarized thermal radiation from individual nanoheaters using a rotating polarizer inserted in front of the InSb detector. Polarization traces (b) acquired for a 500 nm and 1000 nm wide nanoheater where the polarization changes from parallel to a perpendicular orientation.

Fig. 2
Fig. 2

Change of the extinction ratio (a) as function of nanoheater width with polarization rotating for width~700nm and simulations of the degree of polarization for an infinite cylinder (b).

Fig. 3
Fig. 3

Parallel and perpendicular thermal radiation spectra from an 800 nm wide nanoheater as function of temperature. A λ/2 resonance peak is detected in the perpendicular orientation spectra for the thermal radiation.

Fig. 4
Fig. 4

Surface plot (a) of the polarization traces for an 850 nm wide nanoheater as function of temperature. At lower temperatures parallel polarization is dominant and rotates towards a perpendicular direction at higher temperatures. Change in the extinction ratio for the 850 nm nanoheater as function of temperature (b).

Metrics