Abstract

We have generated 4 × 100-Gb/s orthogonal WDM optical signal by employing polarization-division-multiplexed (PDM) return-to-zero (RZ) QPSK modulation format and tight optical filtering technique. The required optical signal-to-noise ratio (OSNR) at bit error ratio (BER) of 2 × 10−3 for the 400Gb/s orthogonal DWDM signal is measured to be ~22.8 dB/0.1nm. After transmission over 1040-km standard single mode fiber (EDFA-only amplification, 80-km amplifier span and fully receiver-side electrical dispersion compensation), the measured BER for all the four orthogonal subchannels are smaller than 2 × 10−3.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Magill, "System Technologies for 100G Transport Networks," in Proc OFC, paper OThR1 (2009).
  2. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, Unrepeated 200-km Transmission of 40-Gbit/s 16-QAM Signals using Digital Coherent Optical Receiver, in: OECC 2008, 2008, PDP4.
  3. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magill, “High Spectral-Efficiency 114Gb/s Transmission Using PolMux-RZ-8PSK Modulation Format and Single-Ended Digital Coherent Detection Technique,” J. Lightwave Technol. 27(3), 146–152 (2009).
    [CrossRef]
  4. X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Y. Ten, H. B. Mattew, and S. K. Mishra, "32Tb/s (320 x 114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber," in Proc OFC, paper PDPB4 (2009).
  5. J. Yu and X. Zhou, “Multilevel Modulations and Digital Coherent Detection,” Opt. Fiber Technol. 15(3), 197–208 (2009).
    [CrossRef]
  6. C. R. S. Fludger, T. Duthel, D. Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. Man, G. Khoe, and H. Waardt, "10 x111 Gb/s, 50 GHz spaced, PolMux-RZ-DQPSK transmission over 2375 employing coherent equalization," in Proc OFC, paper PDP 22 (2007).
  7. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, "13.5-Tb/s (135x111-Gb/s/ch) no - guard-interval coherent OFDM transmission over 6248km using SNR maximized second-order DRA in the extended L-band," in Proc OFC, paper PDPB5 (2009).
  8. J. Yu, X. Zhou, M. Huang, D. Qian, P. N. Ji, and L. Xu, "Transmission of hybrid 112 and 44 Gb/s PolMux-QPSK in 25GHz channel spacing over 1600km SSMF employing digital coherent detection and EDFA-only amplification," in Proc OFC, paper OThR3 (2009).
  9. J. Yu, X. Zhou, L. Xu, P. N. Ji, and T. Wang, "A novel scheme to generate 100Gbit/s DQPSK signal with large PMD tolerance," in Proc OFC, paper JThA42 (2007).
  10. M. Nakazawa, J. Hongo, K. Kasai, and M. Yoshida, “Polarization-multiplexed 1 Gsymbol/s 64QAM (12Gb/s) coherent optical transmission over 150km with an optical bandwidth of 2 GHz,” in Proc OFC, paper PDP26 (2007).
  11. M. Seimetz, L. Molle, D.-D. Gross, B. Auth, and R. Freund, “Coherent RZ-8PSK transmission at 30 Gb/s over 1200 km employing Homodyne detection with digital carrier phase estimation,” in Proc OFC, paper We 8.3.4 (2007).
  12. J. M. Kahn and K.-P. Ho, “Spectral Efficiency Limits and Modulation/Detection Techniques for DWDM Systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
    [CrossRef]
  13. A. Chowdhury, M. Huang, Z. Jia, J. Yu, R. Younce, and G. K. Chang, “10x100Gb/s transmissions using optical carrier suppression and separation technique and RZ-QPSK modulation for metro-ethernet transport system”, in Proc OFC, paper WH2 (2008).
  14. G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
    [CrossRef]
  15. Y. Tang, and W. Shieh, “Coherent Optical OFDM Transmission Up to 1 Tb/s per Channel,” in proc OFC, paper PDPC1 (2009).
  16. R. Dischler, and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM-OFDM-FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF”, in proc OFC, paper PDPC2 (2009).

2009 (2)

2007 (1)

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

2004 (1)

J. M. Kahn and K.-P. Ho, “Spectral Efficiency Limits and Modulation/Detection Techniques for DWDM Systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Goldfarb, G.

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

Ho, K.-P.

J. M. Kahn and K.-P. Ho, “Spectral Efficiency Limits and Modulation/Detection Techniques for DWDM Systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Kahn, J. M.

J. M. Kahn and K.-P. Ho, “Spectral Efficiency Limits and Modulation/Detection Techniques for DWDM Systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Li, G.

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

Magill, P.

Qian, D.

Taylor, M. G.

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

Wang, T.

Yu, J.

Zhang, G.

Zhou, X.

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Kahn and K.-P. Ho, “Spectral Efficiency Limits and Modulation/Detection Techniques for DWDM Systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Fiber Technol. (1)

J. Yu and X. Zhou, “Multilevel Modulations and Digital Coherent Detection,” Opt. Fiber Technol. 15(3), 197–208 (2009).
[CrossRef]

Other (12)

C. R. S. Fludger, T. Duthel, D. Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. Man, G. Khoe, and H. Waardt, "10 x111 Gb/s, 50 GHz spaced, PolMux-RZ-DQPSK transmission over 2375 employing coherent equalization," in Proc OFC, paper PDP 22 (2007).

H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, "13.5-Tb/s (135x111-Gb/s/ch) no - guard-interval coherent OFDM transmission over 6248km using SNR maximized second-order DRA in the extended L-band," in Proc OFC, paper PDPB5 (2009).

J. Yu, X. Zhou, M. Huang, D. Qian, P. N. Ji, and L. Xu, "Transmission of hybrid 112 and 44 Gb/s PolMux-QPSK in 25GHz channel spacing over 1600km SSMF employing digital coherent detection and EDFA-only amplification," in Proc OFC, paper OThR3 (2009).

J. Yu, X. Zhou, L. Xu, P. N. Ji, and T. Wang, "A novel scheme to generate 100Gbit/s DQPSK signal with large PMD tolerance," in Proc OFC, paper JThA42 (2007).

M. Nakazawa, J. Hongo, K. Kasai, and M. Yoshida, “Polarization-multiplexed 1 Gsymbol/s 64QAM (12Gb/s) coherent optical transmission over 150km with an optical bandwidth of 2 GHz,” in Proc OFC, paper PDP26 (2007).

M. Seimetz, L. Molle, D.-D. Gross, B. Auth, and R. Freund, “Coherent RZ-8PSK transmission at 30 Gb/s over 1200 km employing Homodyne detection with digital carrier phase estimation,” in Proc OFC, paper We 8.3.4 (2007).

X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Y. Ten, H. B. Mattew, and S. K. Mishra, "32Tb/s (320 x 114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber," in Proc OFC, paper PDPB4 (2009).

P. Magill, "System Technologies for 100G Transport Networks," in Proc OFC, paper OThR1 (2009).

Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, Unrepeated 200-km Transmission of 40-Gbit/s 16-QAM Signals using Digital Coherent Optical Receiver, in: OECC 2008, 2008, PDP4.

Y. Tang, and W. Shieh, “Coherent Optical OFDM Transmission Up to 1 Tb/s per Channel,” in proc OFC, paper PDPC1 (2009).

R. Dischler, and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM-OFDM-FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF”, in proc OFC, paper PDPC2 (2009).

A. Chowdhury, M. Huang, Z. Jia, J. Yu, R. Younce, and G. K. Chang, “10x100Gb/s transmissions using optical carrier suppression and separation technique and RZ-QPSK modulation for metro-ethernet transport system”, in Proc OFC, paper WH2 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

400-Gb/s orthogonal PDM-RZ-QPSK DWDM signal generation and detection.

Fig. 2
Fig. 2

Experimental setup for 400-Gb/s orthogonal DWDM signal generation and transmission. The inserted waveform is after MZM2. OC: optical coupler, PBC: polarization beam combiner, IL: interleaver, TOF: tunable optical filter.

Fig. 3
Fig. 3

Optical spectra at different locations (BW: 0.1nm). (a) After MZM2 driven by 25-GHz sinusoidal RF source when data on MZM1 and PM2 are turned off. (b) Before 100-GHz WSS when only one input port of the second 25-GHz interleaver is connected (only odd subchannels are passed), and (c) only even subchannels are passed. (d) Before 100-GHz WSS when all input ports of the second 25-GHz interleaver are connected. (e) After 100-GHz WSS.

Fig. 5
Fig. 5

BER curves of four-subchannels and 400Gb/s signal before transmission.

Fig. 6
Fig. 6

BER curves of subchannel 2 at different situations. No crosstalk means the odd subchannels are turned off. OSNR is measured at 0.1nm ASE noise bandwidth.

Fig. 4
Fig. 4

Optical spectrum (0.1-nm resolution). (a) Before and (b) after transmission. Constellation of subchannel 1 before (a) and after (b) transmission is inserted.

Metrics