Abstract

Quasi-phase-matching devices are usually fabricated by electric field poling over photolithographically defined electrode patterns on ferroelectric crystal substrates. For the optimal nonlinear optical performance of such devices, the micro-poled domain structure must ensure good fidelity to the designed grating structure. We present a nondestructive diffraction method to evaluate the quality of periodically poled lithium niobate crystals, by utilizing index modulation caused by the internal field effects. Our proposed method is much simpler than the conventional second-harmonic generation experiment, and provides a fast, low-cost but accurate means for micro-poling quality evaluation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [CrossRef]
  3. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
    [CrossRef]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
    [CrossRef]
  5. J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
    [CrossRef]
  6. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, “Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography,” Opt. Express 11(4), 392–405 (2003).
    [CrossRef] [PubMed]
  7. H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
    [CrossRef]
  8. M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).
  9. F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
    [CrossRef]
  10. M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
    [CrossRef]
  11. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE, Nonlinear Optical Material and Characterisation, 7197, 71970R (2009).
  12. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
    [CrossRef]
  13. H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997).
    [CrossRef]
  14. J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000).
    [CrossRef]
  15. J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).
  16. T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999).
    [CrossRef]
  17. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (John Wiley & Sons, Inc., Canada, 1978).

2005

M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
[CrossRef]

2003

2002

J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).

2001

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[CrossRef]

2000

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000).
[CrossRef]

1999

T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[CrossRef]

1998

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

1997

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997).
[CrossRef]

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

1995

1993

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Aust, J. A.

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

Batchko, R. G.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[CrossRef]

Bluhm, H.

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

Bosenberg, W. R.

Buse, K.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
[CrossRef]

Byer, R. L.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Cha, M.

M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).

J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000).
[CrossRef]

Chiarini, M.

Clemens, R.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[CrossRef]

De Natale, P.

De Nicola, S.

Eckardt, R. C.

Fejer, M. M.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Ferraro, P.

Finizio, A.

Fu, B.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Furukawa, Y.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Gao, F.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Gopalan, V.

T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Grilli, S.

Hellström, J.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[CrossRef]

Jeon, O. Y.

M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).

Jin, M. J.

M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Karlsson, H.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[CrossRef]

Kim, B. J.

M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).

Kim, T. H.

J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).

Kitamura, K.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Langrock, C.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
[CrossRef]

Laurell, F.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Ming, N. B.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997).
[CrossRef]

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Mohideen, U.

T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999).
[CrossRef]

Müller, M.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
[CrossRef]

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[CrossRef]

Nam, D.

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

Pasiskevicius, V.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[CrossRef]

Pierattini, G.

Pierce, J. W.

Qi, J.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Ro, J. H.

J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).

J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000).
[CrossRef]

Roshko, A.

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

Rupp, R. A.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[CrossRef]

Shur, V. Y.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[CrossRef]

Soergel, E.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
[CrossRef]

Swart, P. J.

T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999).
[CrossRef]

Tang, B.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Wadas, A.

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

Wang, H. F.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997).
[CrossRef]

Wang, Z.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[CrossRef]

Wiesendanger, R.

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

Xu, J.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[CrossRef]

Yan, B.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Yang, T. J.

T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999).
[CrossRef]

Yao, J.

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

Zhu, S. N.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997).
[CrossRef]

Zhu, Y. Y.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997).
[CrossRef]

Appl. Phys. Lett.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993).
[CrossRef]

H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997).
[CrossRef]

F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Appl. Phys.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001).
[CrossRef]

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005).
[CrossRef]

J. Korean Phys. Soc.

J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).

M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. Lett.

T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999).
[CrossRef]

Other

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (John Wiley & Sons, Inc., Canada, 1978).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE, Nonlinear Optical Material and Characterisation, 7197, 71970R (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the PPLN with an aperiodic domain in the middle (Λ = 18.5 μm) (a), 1st order-diffraction pattern from as-poled PPLN (b), 1st order-diffraction pattern from etched PPLN (c), and SHG wavelength tuning curve (d). Solid lines are from the binary phase grating model.

Fig. 2
Fig. 2

Typical diffraction pattern for one location (a) and histogram (b) for EO-diffraction pattern. Diffraction pattern for one location (c) and histogram for etched PPLN (d).

Metrics