Abstract

A new reduced mode overlap (RMO) single mode fiber design is proposed and demonstrated. For the first time saturated photo darkening operation is observed in a nominal 350 W Yb / Al co-doped silica fiber laser. After 1500 hours operation less than 7% slope efficiency degradation is found and further 500 hours operation show no degradation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
    [CrossRef]
  2. D. Gapontsev, “6 kW CW single mode ytterbium fiber laser in all-fiber format”, Conf. on Solid State and Diode Laser Tech. Review, Directed Energy professional society, Albuquerque, New Mexico (2008)
  3. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [CrossRef] [PubMed]
  4. J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, “Photodarkening Measurements in large mode area Fibers”, Proc. SPIE, Vol. 6453, 645350 (2007)
  5. K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V (2009).
    [CrossRef]
  6. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
    [CrossRef]
  7. W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Large mode area photonic crystal fibre laser”, Proc. of CLEO, CWC1 (2001)
  8. K. E. Mattsson, S. N. Knudsen, B. Cadier, and T. Robin, “Photo darkening in ytterbium co-doped silica material”, Proc. SPIE, Vol. 6873, 68731C (2008)
  9. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
    [CrossRef] [PubMed]
  10. I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
    [CrossRef]
  11. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
    [CrossRef]
  12. T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno and K. Ohashi, “Population Inversion Factor Dependence of Photodarkening of yb-doped Fibers and its Suppression by highly Aluminum Doping”, Optics Letters, OFC/NFOEC 2006, OThC5, (2006)

2009

2008

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

2007

2006

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

2005

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

1998

Basu, C.

Boyland, A. J.

Broeng, J.

K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V (2009).
[CrossRef]

Bufetov, I. A.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Byer, R. L.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Denker, B. I.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Dianov, E. M.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Digonnet, M. J. F.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Dudin, V. V.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Galagan, B. I.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Hanna, D. C.

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Jetschke, S.

Jiang, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Kosolapov, A. F.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Lee, Y. W.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Limpert, J.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Mattsson, K. E.

K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V (2009).
[CrossRef]

Mel’kumov, M. A.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Minelly, J. D.

Nilsson, J.

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Osiko, V. V.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Paschotta, R.

Payne, D.

Röpke, U.

Röser, F.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Sahu, J. K.

Schreiber, T.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Semenov, S. L.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Sinha, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Sones, C.

Sverchkov, S. E.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Tropper, A. C.

Tünnermann, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Yoo, S.

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Electron. Lett.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

J. Phys. At. Mol. Opt. Phys.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys. 38(9), S681–693 (2005).
[CrossRef]

Opt. Lett.

Proc. SPIE

K. E. Mattsson and J. Broeng, “Photo darkening of ytterbium cw fiber lasers,” Proc. SPIE 7195, 71950V (2009).
[CrossRef]

Quantum Electron.

I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, V. V. Dudin, B. I. Galagan, B. I. Denker, V. V. Osiko, S. E. Sverchkov, and E. M. Dianov, “Ytterbium fibre laser with a heavily Yb3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006).
[CrossRef]

Other

W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Large mode area photonic crystal fibre laser”, Proc. of CLEO, CWC1 (2001)

K. E. Mattsson, S. N. Knudsen, B. Cadier, and T. Robin, “Photo darkening in ytterbium co-doped silica material”, Proc. SPIE, Vol. 6873, 68731C (2008)

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, “Photodarkening Measurements in large mode area Fibers”, Proc. SPIE, Vol. 6453, 645350 (2007)

D. Gapontsev, “6 kW CW single mode ytterbium fiber laser in all-fiber format”, Conf. on Solid State and Diode Laser Tech. Review, Directed Energy professional society, Albuquerque, New Mexico (2008)

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno and K. Ohashi, “Population Inversion Factor Dependence of Photodarkening of yb-doped Fibers and its Suppression by highly Aluminum Doping”, Optics Letters, OFC/NFOEC 2006, OThC5, (2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a) Double cladding RMO fiber design – Single mode core surrounded by Yb /Al silica index matched ring, carried in a silica pump core surrounded by an air clad, outer silica tube which is protected by a thin polymeric coating (not shown) b) Schematic refractive index profile of the RMO fiber design – the insert show a cross sectional view of the nanostructure silica (index matched to silica) with < 100 nm diameter for the rare earth co-doped silica.

Fig. 2
Fig. 2

a) Un-seeded amplifier PD at 605 nm measured through the pump core as function of time for the 3 fiber designs superimposed stretched exponential function fits, b) Characterized saturated PD level as function of pump power for the three fiber materials.

Fig. 3
Fig. 3

Slope efficiency for 3 MOPA systems with nominal 350 W output power operated with constant pump power for up to 2000 hours. Fiber 1 and 2 are standard type single mode fiber designs with 30% and 43% signal to active material overlap, whereas fiber 3 is a new single mode RMO fiber design with 11% overlap that show saturated operation >1500 hours. Arrows indicate model predictions for PD saturation.

Tables (1)

Tables Icon

Table 1 Design type, Material parameters, Yb doped area in the nanostructure area, measured 915 nm pump absorption, signal to active material overlap, master oscillator / power amplifier length, calculated population inversion 2 cm from pump entrance

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

αC(I)=σa(T)NDISATISAT+I
τaPhonon=at1exp((aphId)β)
ISAT=hντC(T,I)σa(T)

Metrics