Abstract

We numerically study the propagation properties of vector vortex beams through a turbulent atmosphere. The irradiance pattern, degree of polarization, and scintillation index of radially polarized beam are computed for different propagation distances in an atmosphere with weak and strong turbulences. Corresponding properties of a fundamental Gaussian beam and a scalar vortex beam with topological charge of + 1 propagating through the same atmospheric turbulence conditions are calculated for comparison. With the same initial intensity profile, the vector vortex beam shows substantially lower scintillation than the scalar vortex. The existence of the vectorial vortex can be identified with longer propagation distance than the scalar vortex even with vanishing characteristic vortex structure in the irradiance images. This indicates the potential advantages of using a vector vortex beam to mitigate atmospheric effects and enable a more robust free space communication channel with longer link distance.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews, and R. L. Phillips, Laser beam propagation through random media, (SPIE Press, Bellingham, Washington, 1998).
  2. H. T. Eyyuboglu, C. Arpali, and Y. K. Baykal, “Flat topped beams and their characteristics in turbulent media,” Opt. Express 14(10), 4196–4207 (2006).
    [CrossRef] [PubMed]
  3. H. T. Eyyuboglu, “Propagation of higher order Bessel-Gaussian beams in turbulence,” Appl. Phys. B 88(2), 259–265 (2007).
    [CrossRef]
  4. Y. Cai, “Propagation of various flat-topped beams in a turbulent atmosphere,” J. Opt. A, Pure Appl. Opt. 8(6), 537–545 (2006).
    [CrossRef]
  5. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117–0411173 (2006).
    [CrossRef]
  6. H. T. Eyyuboglu, Y. Baykal, and E. Sermutlu, “Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere,” Opt. Commun. 265(2), 399–405 (2006).
    [CrossRef]
  7. Y. Cai and S. He, “Average intensity and spreading of an elliptical gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31(5), 568–570 (2006).
    [CrossRef] [PubMed]
  8. M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008).
    [CrossRef]
  9. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, and Y. Baykal, “Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere,” Opt. Express 17(13), 11130–11139 (2009).
    [CrossRef] [PubMed]
  10. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  11. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
    [CrossRef] [PubMed]
  12. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” N. J. Phys. 9(9), 328–333 (2007).
    [CrossRef]
  13. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25(1), 225–229 (2008).
    [CrossRef]
  14. M. S. Soskin, and M. V. Vasnetsov, Singular Optics, in Progress in Optics (Ed. Emil Wolf), 42, 219–276 (2001).
  15. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [CrossRef]
  16. Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).
    [CrossRef] [PubMed]
  17. J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27(11), 2111–2126 (1988).
    [CrossRef] [PubMed]
  18. J. M. Martin and S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7(5), 838–847 (1990).
    [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics, (McGrw-Hill Press, 1996).
  20. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39(30), 5426–5445 (2000).
    [CrossRef]
  21. L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001).
    [CrossRef]
  22. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of scalar and vector vortex beams through turbulent atmosphere,” Proc. SPIE 7200, 720004 (2009).
    [CrossRef]

2009

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[CrossRef]

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of scalar and vector vortex beams through turbulent atmosphere,” Proc. SPIE 7200, 720004 (2009).
[CrossRef]

Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, and Y. Baykal, “Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere,” Opt. Express 17(13), 11130–11139 (2009).
[CrossRef] [PubMed]

2008

2007

H. T. Eyyuboglu, “Propagation of higher order Bessel-Gaussian beams in turbulence,” Appl. Phys. B 88(2), 259–265 (2007).
[CrossRef]

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” N. J. Phys. 9(9), 328–333 (2007).
[CrossRef]

2006

Y. Cai and S. He, “Average intensity and spreading of an elliptical gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31(5), 568–570 (2006).
[CrossRef] [PubMed]

H. T. Eyyuboglu, C. Arpali, and Y. K. Baykal, “Flat topped beams and their characteristics in turbulent media,” Opt. Express 14(10), 4196–4207 (2006).
[CrossRef] [PubMed]

Y. Cai, “Propagation of various flat-topped beams in a turbulent atmosphere,” J. Opt. A, Pure Appl. Opt. 8(6), 537–545 (2006).
[CrossRef]

Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117–0411173 (2006).
[CrossRef]

H. T. Eyyuboglu, Y. Baykal, and E. Sermutlu, “Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere,” Opt. Commun. 265(2), 399–405 (2006).
[CrossRef]

2005

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

2004

2001

L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001).
[CrossRef]

2000

1990

1988

Alavinejad, M.

M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008).
[CrossRef]

Al-Habash, M. A.

L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001).
[CrossRef]

Andrews, L. C.

L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001).
[CrossRef]

Arpali, C.

Barnett, S.

Baykal, Y.

Baykal, Y. K.

Belmonte, A.

Bouchal, Z.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” N. J. Phys. 9(9), 328–333 (2007).
[CrossRef]

Cai, Y.

Celechovský, R.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” N. J. Phys. 9(9), 328–333 (2007).
[CrossRef]

Cheng, W.

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of scalar and vector vortex beams through turbulent atmosphere,” Proc. SPIE 7200, 720004 (2009).
[CrossRef]

Courtial, J.

Eyyuboglu, H. T.

Flatté, S. M.

Franke-Arnold, S.

Gbur, G.

Ghafary, B.

M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008).
[CrossRef]

Gibson, G.

Haus, J. W.

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of scalar and vector vortex beams through turbulent atmosphere,” Proc. SPIE 7200, 720004 (2009).
[CrossRef]

He, S.

Y. Cai and S. He, “Average intensity and spreading of an elliptical gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31(5), 568–570 (2006).
[CrossRef] [PubMed]

Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117–0411173 (2006).
[CrossRef]

Hopen, C. Y.

L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001).
[CrossRef]

Kashani, F. D.

M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008).
[CrossRef]

Lin, Q.

Martin, J. M.

Padgett, M.

Pas’ko, V.

Paterson, C.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

Phillips, R. L.

L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001).
[CrossRef]

Qu, J.

Sermutlu, E.

H. T. Eyyuboglu, Y. Baykal, and E. Sermutlu, “Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere,” Opt. Commun. 265(2), 399–405 (2006).
[CrossRef]

Tyson, R. K.

Vasnetsov, M.

Yuan, Y.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[CrossRef]

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of scalar and vector vortex beams through turbulent atmosphere,” Proc. SPIE 7200, 720004 (2009).
[CrossRef]

Adv. Opt. Photonics

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. T. Eyyuboglu, “Propagation of higher order Bessel-Gaussian beams in turbulence,” Appl. Phys. B 88(2), 259–265 (2007).
[CrossRef]

Appl. Phys. Lett.

Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117–0411173 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

Y. Cai, “Propagation of various flat-topped beams in a turbulent atmosphere,” J. Opt. A, Pure Appl. Opt. 8(6), 537–545 (2006).
[CrossRef]

J. Opt. Soc. Am. A

N. J. Phys.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” N. J. Phys. 9(9), 328–333 (2007).
[CrossRef]

Opt. Commun.

H. T. Eyyuboglu, Y. Baykal, and E. Sermutlu, “Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere,” Opt. Commun. 265(2), 399–405 (2006).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

Proc. SPIE

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of scalar and vector vortex beams through turbulent atmosphere,” Proc. SPIE 7200, 720004 (2009).
[CrossRef]

Waves Random Media

L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, (McGrw-Hill Press, 1996).

M. S. Soskin, and M. V. Vasnetsov, Singular Optics, in Progress in Optics (Ed. Emil Wolf), 42, 219–276 (2001).

L. C. Andrews, and R. L. Phillips, Laser beam propagation through random media, (SPIE Press, Bellingham, Washington, 1998).

Supplementary Material (18)

» Media 1: MOV (452 KB)     
» Media 2: MOV (408 KB)     
» Media 3: MOV (422 KB)     
» Media 4: MOV (642 KB)     
» Media 5: MOV (599 KB)     
» Media 6: MOV (627 KB)     
» Media 7: MOV (503 KB)     
» Media 8: MOV (478 KB)     
» Media 9: MOV (498 KB)     
» Media 10: MOV (648 KB)     
» Media 11: MOV (609 KB)     
» Media 12: MOV (613 KB)     
» Media 13: MOV (505 KB)     
» Media 14: MOV (685 KB)     
» Media 15: MOV (717 KB)     
» Media 16: MOV (679 KB)     
» Media 17: MOV (701 KB)     
» Media 18: MOV (833 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Propagation procedure flow chart used in the numerical model. (Left) Beam Propagation Procedure (Middle) Sample Random Phase Screen (Right) Random Phase Generation Procedure.

Fig. 2
Fig. 2

Radial x-polarized beam as a superimposition of two orthogonally, linearly y-polarized HG modes.

Fig. 3
Fig. 3

Beam irradiance movies for the propagation of three kinds of beams through a weak turbulence (Cn 2 = 10−14 m-2/3) (a) Fundamental Gaussian (Media 1), (b) Scalar vortex beam (Media 2) and (c) Vector vortex beam (Media 3).

Fig. 6
Fig. 6

Irradiance linescan movies for the propagation of three kinds of beams through a strong turbulence (Cn 2 = 10−12 m-2/3) (a) Fundamental Gaussian (Media 10), (b) Scalar vortex beam (Media 11) and (c) Vector vortex beam (Media 12).

Fig. 4
Fig. 4

Irradiance linescan movies for the propagation of three kinds of beams through a weak turbulence (Cn 2 = 10−14 m-2/3) (a) Fundamental Gaussian (Media 4), (b) Scalar vortex beam (Media 5) and (c) Vector vortex beam (Media 6).

Fig. 7
Fig. 7

Scintillation index vs. propagation distance with (a) Cn 2 = 10−14 m-2/3, and (b) Cn 2 = 10−12 m-2/3.

Fig. 8
Fig. 8

Movies for (a) Stokes parameter S1 (Media 13), (b) Stokes parameter S3 (Media 14) and (c) Linescan of Degree of Polarization (Media 15) for the propagation of vector vortex beam through a weak turbulence.

Fig. 9
Fig. 9

Movies for (a) Stokes parameter S1 (Media 16), (b) Stokes parameter S3 (Media 17) and (c) Linescan of Degree of Polarization (Media 18) for the propagation of vector vortex beam through a strong turbulence.

Fig. 5
Fig. 5

Beam irradiance movies for the propagation of three kinds of beams through a strong turbulence (Cn 2 = 10−12 m-2/3) (a) Fundamental Gaussian (Media 7), (b) Scalar vortex beam (Media 8) and (c) Vector vortex beam (Media 9).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φn(K)=0.033Cn2×exp[(Kl02π)2](K2+(2πL0)2)11/6,
u(r,ϕ,z)=E0(2rw(z))lLpl(2r2w(z)2)w0w(z)exp[iφpl(z)]exp[ik2q(z)r2]exp(ilϕ),
E(r,ϕ,z=0)=E0(2rw0)lLpl(2r2w02)exp[r2/w02]er,
σI2=I2I2I2

Metrics