Abstract

We present an optomechanical method to tune phase and group birefringence in parallel silicon strip waveguides. We first calculate the deformation of suspended, parallel strip waveguides due to optical forces. We optimize the frequency and polarization of the pump light to obtain a 9nm deformation for an optical power of 20mW. Widely tunable phase and group birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion within 30µm for a pump power of 67mW. The group birefringence gives a tunable differential group delay of 6fs between orthogonal polarizations. We also evaluate the tuning performance of waveguides with different cross sections.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [CrossRef] [PubMed]
  2. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
    [CrossRef]
  3. F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
    [CrossRef]
  4. M. L. Povinelli, “Microphotonics: Under pressure (News and Views),” Nat. Photonics 1(7), 370–371 (2007).
    [CrossRef]
  5. M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005).
    [CrossRef] [PubMed]
  6. J. Ng, C. T. Chan, P. Sheng, and Z. Lin, “Strong optical force induced by morphology-dependent resonances,” Opt. Lett. 30(15), 1956–1958 (2005).
    [CrossRef] [PubMed]
  7. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
    [CrossRef]
  8. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
    [CrossRef]
  9. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
    [CrossRef]
  10. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [CrossRef] [PubMed]
  11. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
    [CrossRef] [PubMed]
  12. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [CrossRef]
  13. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Arxiv 0904.0794v1.
  14. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
    [CrossRef] [PubMed]
  15. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [CrossRef] [PubMed]
  16. S. H. Yang, M. L. Cooper, P. R. Bandaru, and S. Mookherjea, “Giant birefringence in multi-slotted silicon nanophotonic waveguides,” Opt. Express 16(11), 8306–8316 (2008).
    [CrossRef] [PubMed]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002).
    [CrossRef]
  18. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
    [PubMed]
  19. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
    [CrossRef]
  20. K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92(6), 061109 (2008).
    [CrossRef]
  21. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
    [CrossRef] [PubMed]
  22. COMSOL is a multiphysics software package for performing finite-element-method (FEM) simulations. See http://www.comsol.com/ .
  23. M. I. T. Photonic Bands, (MPB) is a free software package for the solution of the electromagnetic eigenmodes of periodic structures. MPB has been developed at MIT, http://ab-initio.mit.edu/wiki/index.php/MPB .
  24. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  25. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  26. J. D. Jackson, Classical Electromagnetics, 3rd edition, (John Wiley & Sons, New York, 1999).
  27. V. A. Parsegian, Van der Waals Forces, (Cambridge University Press, Cambridge, 2005).
  28. A. H. Rose, N. Feat, and S. M. Etzel, “Wavelength and temperature performance of polarization-transforming fiber,” Appl. Opt. 42(34), 6897–6904 (2003).
    [CrossRef] [PubMed]
  29. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
    [CrossRef] [PubMed]
  30. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
    [CrossRef]
  31. J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
    [CrossRef]
  32. K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Express 17(9), 7145–7158 (2009).
    [CrossRef] [PubMed]
  33. C. Fietz and G. Shvets, “Nonlinear polarization conversion using microring resonators,” Opt. Lett. 32(12), 1683–1685 (2007).
    [CrossRef] [PubMed]
  34. R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
    [CrossRef]
  35. H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(8), 970–972 (1999).
    [CrossRef]
  36. R. W. Boyd, Nonlinear Optics, (2nd edition, Academic Press, Boston, 2003).
  37. “Tables and graphs of the complex index of refraction for common microfabrication materials,” http://www.ee.byu.edu/photonics/tabulatedopticalconstants.phtml
  38. C. Fietz and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007).
    [CrossRef] [PubMed]
  39. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
    [CrossRef] [PubMed]
  40. F. Morichetti, C. Ferrari, A. Melloni, and M. Martinelli, “Polarization-Selective Tunable Delay in Coupled-Resonator Optical Delay-Lines,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper IWG1.

2009 (6)

2008 (5)

S. H. Yang, M. L. Cooper, P. R. Bandaru, and S. Mookherjea, “Giant birefringence in multi-slotted silicon nanophotonic waveguides,” Opt. Express 16(11), 8306–8316 (2008).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92(6), 061109 (2008).
[CrossRef]

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

2007 (7)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

M. L. Povinelli, “Microphotonics: Under pressure (News and Views),” Nat. Photonics 1(7), 370–371 (2007).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[CrossRef]

C. Fietz and G. Shvets, “Nonlinear polarization conversion using microring resonators,” Opt. Lett. 32(12), 1683–1685 (2007).
[CrossRef] [PubMed]

C. Fietz and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007).
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
[CrossRef] [PubMed]

2005 (4)

2004 (3)

2003 (1)

2002 (2)

2001 (1)

R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[CrossRef]

1999 (1)

H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(8), 970–972 (1999).
[CrossRef]

1995 (1)

J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
[CrossRef]

1991 (1)

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Alferness, R.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Almeida, V. R.

Antezza, M.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Antonopoulos, A.

R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[CrossRef]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Bandaru, P. R.

Barrios, C. A.

Bayat, K.

Breda, A.

Camacho, R.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Canciamilla, A.

Capasso, F.

Carusotto, I.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Chan, C. T.

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

Chaudhuri, S. K.

Cooper, M. L.

Czapla, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Domanski, A. W.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Eggleton, B. J.

Eichenfield, M.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Erasme, D.

H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(8), 970–972 (1999).
[CrossRef]

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Etzel, S. M.

Fathpour, S.

K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92(6), 061109 (2008).
[CrossRef]

Feat, N.

Ferrari, C.

Fietz, C.

Guekos, G.

H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(8), 970–972 (1999).
[CrossRef]

Hakimzadeh, F.

J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
[CrossRef]

Hale, A.

Haus, H. A.

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Ibanescu, M.

Ippen, E. P.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[CrossRef]

Jalali, B.

K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92(6), 061109 (2008).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Johnson, S. G.

Kelly, A.

R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[CrossRef]

Kerbage, C.

Koch, T.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Koren, U.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Koyama, F.

Kruszelnicki, E. N.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Kuga, T.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Kumar, M.

Kuramochi, E.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Li, D.

J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
[CrossRef]

Li, M.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Lin, Z.

Lipson, M.

Loncar, M.

Lonèar, M.

Manning, R.

R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[CrossRef]

Martinelli, M.

Melloni, A.

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Miller, B. I.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Mookherjea, S.

Morichetti, F.

Ng, J.

Notomi, M.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Oron, M.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Panepucci, R. R.

Pedersen, J. W.

J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
[CrossRef]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

Pernice, W. H. P.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Popovic, M. A.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[CrossRef]

Povinelli, M. L.

Rakich, P. T.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[CrossRef]

Recati, A.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Reyes, P.

Riboli, F.

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

Rose, A. H.

Roux, R. L.

R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[CrossRef]

Safavi-Naeini, S.

Sakaguchi, T.

Shani, Y.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Sheng, P.

Shvets, G.

Smythe, E. J.

Soljacic, M.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[CrossRef]

Soto, H.

H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(8), 970–972 (1999).
[CrossRef]

Steinvurzel, P.

Tang, H. X.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Taniyama, H.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Torii, Y.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Tsia, K. K.

K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92(6), 061109 (2008).
[CrossRef]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

van Brug, H.

J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
[CrossRef]

van der Tol, J. J. G. M.

J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
[CrossRef]

Watts, M. R.

Westbrook, P. S.

Windeler, R. S.

Wolinski, T. R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Xu, Q.

Xu, Q. F.

Yamamoto, T.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Yang, S. H.

Yoshikawa, Y.

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Young, M. G.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92(6), 061109 (2008).
[CrossRef]

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991).
[CrossRef]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Electron. Lett. (1)

R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001).
[CrossRef]

Eur. Phys. J. D (1)

F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(8), 970–972 (1999).
[CrossRef]

J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995).
[CrossRef]

Nat. Photonics (4)

M. L. Povinelli, “Microphotonics: Under pressure (News and Views),” Nat. Photonics 1(7), 370–371 (2007).
[CrossRef]

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

Nature (2)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Opt. Express (7)

C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002).
[PubMed]

M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005).
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
[CrossRef] [PubMed]

S. H. Yang, M. L. Cooper, P. R. Bandaru, and S. Mookherjea, “Giant birefringence in multi-slotted silicon nanophotonic waveguides,” Opt. Express 16(11), 8306–8316 (2008).
[CrossRef] [PubMed]

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Express 17(9), 7145–7158 (2009).
[CrossRef] [PubMed]

Opt. Lett. (9)

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
[CrossRef] [PubMed]

C. Fietz and G. Shvets, “Nonlinear polarization conversion using microring resonators,” Opt. Lett. 32(12), 1683–1685 (2007).
[CrossRef] [PubMed]

C. Fietz and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007).
[CrossRef] [PubMed]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002).
[CrossRef]

V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
[CrossRef] [PubMed]

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
[CrossRef] [PubMed]

J. Ng, C. T. Chan, P. Sheng, and Z. Lin, “Strong optical force induced by morphology-dependent resonances,” Opt. Lett. 30(15), 1956–1958 (2005).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Phys. Rev. B (1)

H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008).
[CrossRef]

Other (8)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Arxiv 0904.0794v1.

COMSOL is a multiphysics software package for performing finite-element-method (FEM) simulations. See http://www.comsol.com/ .

M. I. T. Photonic Bands, (MPB) is a free software package for the solution of the electromagnetic eigenmodes of periodic structures. MPB has been developed at MIT, http://ab-initio.mit.edu/wiki/index.php/MPB .

J. D. Jackson, Classical Electromagnetics, 3rd edition, (John Wiley & Sons, New York, 1999).

V. A. Parsegian, Van der Waals Forces, (Cambridge University Press, Cambridge, 2005).

R. W. Boyd, Nonlinear Optics, (2nd edition, Academic Press, Boston, 2003).

“Tables and graphs of the complex index of refraction for common microfabrication materials,” http://www.ee.byu.edu/photonics/tabulatedopticalconstants.phtml

F. Morichetti, C. Ferrari, A. Melloni, and M. Martinelli, “Polarization-Selective Tunable Delay in Coupled-Resonator Optical Delay-Lines,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper IWG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Two coupled Si waveguides, each with cross section w×h separated by a distance d, rest on a SiO2 substrate with a free-standing section of length L. (b) Dispersion relation for the lowest-frequency TE mode (solid lines) and TM mode (dashed lines) of the coupled waveguides for several separations. Insets respectively show the E y field distribution of the TE mode and the E z field distribution of the TM mode with d=0.2a at frequency ωa/2πc=0.18 (darker shades correspond to larger magnitudes of the electric field at a snapshot in time). The yellow region shows the light cone.

Fig. 2
Fig. 2

(a) Normalized force per unit area for the lowest-frequency TE (red) and TM (black) modes as a function of pump light frequency, at fixed separation d=0.35a. (b) Force per unit area as a function of separation (red triangles), at optimized frequency ω pa/2π c=a/λp =0.165. The right and top axes are in physical units with incident power P=20 mW, w=h=a=263.5nm, and L=30 µm. The blue solid line is the second-order polynomial fit of the force per unit area.

Fig. 3
Fig. 3

Displacement of the suspended section of each waveguide as a function of position along the waveguide. The cross-sectional dimension is w=h=a=263.5nm, the initial waveguide separation is d=0.35a ≈92.2nm, the pump frequency is ωpa/2πc=a/λp =0.165, the incident power is P=20 mW, and the suspended length is L=30 µm. Note that the x and y axes differ in scale.

Fig. 4
Fig. 4

(a) Phase birefringence Δnp as a function of signal frequency in the coupled waveguides with varying separations. The arrow shows that at a frequency ωsa/2πc=0.17, the absolute value of Δnp increases as the waveguide separation d decreases. (b) Phase birefringence Δnp as a function of position along the waveguides. The initial separation is d=0.35a≈92.2nm. The attractive force is induced by CW pump light at frequency ωpa/2πc=a/λp =0.165 and power P=20mW. The difference between the maximum and the minimum of │Δnp │ is 0.026.

Fig. 5
Fig. 5

Tuning the relative phase shift by increasing CW pump power from 20mW to 70mW (black squares). The waveguide length is 23.05µm. The red line is a 2nd –order polynomial fit of the phase shift. A power of approximately 67mW yields a 0.5π phase difference.

Fig. 6
Fig. 6

Phase birefringence Δnp as a function of signal frequency in the two-waveguide system with varying separations. (a) The cross section of each waveguide is a×2a. The arrow shows that Δnp decreases with decreasing separation. (b) The cross section of each waveguide is a×0.5a. The absolute value of Δnp increases with decreasing separation.

Fig. 7
Fig. 7

(a) Group birefringence Δng as a function of signal frequency, in the coupled waveguides with varying separations. The arrow shows that as the waveguide separation d increases, the group birefringence Δng increases fastest at a frequency ωsa/2πc=0.17. (b) Group birefringence Δng as a function of position along the waveguides. The waveguides are deformed by an attractive force induced by a CW pump at frequency ωpa/2πc=a/λp =0.165, with a power P=20mW. The difference between the maximum and the minimum of Δng is 0.13.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F=1ωdωdξ|kU
Δϕ=0L|kTE(x)kTM(x)|dx=ωc0L|nPTEnPTM|dx=2πλS0L|ΔnP|dx
Δt=0L(1vgTE1vgTM)dx=1c0L(ngTEngTM)dx=1c0LΔngdx

Metrics