Abstract

Marine micro-bubbles are one of those important constituents that influence scattering characteristics of water column. Monte Carlo Based simulations show that a water entrained bubble cloud generate a characteristic backscatter of incident laser light [M. Xia, J. Opt. A: Pure Appl. Opt. 8, 350 (2006)]. This characteristic can be used to detect and localize bubble clouds, leading to wide ranging applications, especially in optical remote sensing. This paper describes tests of an underwater lidar system applied to detecting cloud of micro-bubbles. Laboratory experiments demonstrate that the system is capable of detecting bubbles ranging from diameter 10 μm ~200 μm, over a distance of 7-12m from the detector. The dependence of the lidar return signal on size distribution of bubbles, concentration, thickness and location of bubble clouds is studied and compared with simulation results.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Stigebrandt, “Computations of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas,” Limnol. Oceanogr. 36, 444–454 (1991).
    [CrossRef]
  2. H. Loisel, X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
    [CrossRef]
  3. D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” Proc. SPIE 2258, 704–710 (1994).
    [CrossRef]
  4. X. D. Zhang, M. Lewis, W. P. Bissett, B. Johnson, and D. Kohler, “Optical influence of ship wakes,” Appl. Opt. 43(15), 3122–3132 (2004).
    [CrossRef] [PubMed]
  5. M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
    [CrossRef]
  6. Y. Liu, “Automatic detecting system for ship wakes in SAR images,” in Fifth World Congress on Intelligent Control and Automation (IEEE, 2004), pp. 3032–3036.
  7. B. D. Johnson and R. C. Cooke, “Generation of Stabilized Microbubbles in Seawater,” Science 213(4504), 209–211 (1981).
    [CrossRef] [PubMed]
  8. L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
    [CrossRef]
  9. M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
    [CrossRef]
  10. P. J. Mulhearn, “Distribution of Microbubbles in Coastal Waters,” J. Geophys. Res. 86(C7), 6429–6434 (1981).
    [CrossRef]
  11. K. Sassen, H. J. Zhao, and G. C. Dodd, “Simulated Polarization Diversity Lidar Returns from Water and Precipitating Mixed Phase Clouds,” Appl. Opt. 31(15), 2914–2923 (1992).
    [CrossRef] [PubMed]
  12. X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
    [CrossRef] [PubMed]
  13. K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
    [CrossRef]
  14. G. D. Gilbert and J. C. Pernicka, “Improvement of Underwater Visibility by Reduction of Backscatter with a Circular Polarization Technique,” Appl. Opt. 6(4), 741–746 (1967).
    [CrossRef] [PubMed]

2007 (2)

H. Loisel, X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

2006 (1)

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

2004 (2)

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

X. D. Zhang, M. Lewis, W. P. Bissett, B. Johnson, and D. Kohler, “Optical influence of ship wakes,” Appl. Opt. 43(15), 3122–3132 (2004).
[CrossRef] [PubMed]

2003 (1)

X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[CrossRef] [PubMed]

2002 (1)

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

1994 (1)

D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” Proc. SPIE 2258, 704–710 (1994).
[CrossRef]

1992 (1)

1991 (1)

A. Stigebrandt, “Computations of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas,” Limnol. Oceanogr. 36, 444–454 (1991).
[CrossRef]

1981 (2)

B. D. Johnson and R. C. Cooke, “Generation of Stabilized Microbubbles in Seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

P. J. Mulhearn, “Distribution of Microbubbles in Coastal Waters,” J. Geophys. Res. 86(C7), 6429–6434 (1981).
[CrossRef]

1967 (1)

Berthon, J. F.

H. Loisel, X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Bissett, W. P.

Cooke, R. C.

B. D. Johnson and R. C. Cooke, “Generation of Stabilized Microbubbles in Seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

Dodd, G. C.

Gilbert, G. D.

Hu, X. Y.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Johnson, B.

Johnson, B. D.

B. D. Johnson and R. C. Cooke, “Generation of Stabilized Microbubbles in Seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

Kohler, D.

Krekov, G. M.

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

Krekova, M. M.

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

Lewis, M.

Li, Y.

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

Li, Z. G.

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

Lin, J. Z.

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

Liu, X. Z.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Loisel, H.

H. Loisel, X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Meriaux, X.

H. Loisel, X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Mulhearn, P. J.

P. J. Mulhearn, “Distribution of Microbubbles in Coastal Waters,” J. Geophys. Res. 86(C7), 6429–6434 (1981).
[CrossRef]

Pernicka, J. C.

Poteau, A.

H. Loisel, X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Rao, J. H.

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

Ren, D. M.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Sassen, K.

Shamanaev, V. S.

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

Stigebrandt, A.

A. Stigebrandt, “Computations of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas,” Limnol. Oceanogr. 36, 444–454 (1991).
[CrossRef]

Stramski, D.

D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” Proc. SPIE 2258, 704–710 (1994).
[CrossRef]

Su, L. P.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Sun, C. W.

X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[CrossRef] [PubMed]

Tan, D.

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

Wang, L. V.

X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[CrossRef] [PubMed]

Wang, X. D.

X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[CrossRef] [PubMed]

Xia, M.

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

Yang, C. C.

X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[CrossRef] [PubMed]

Yang, H.

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

Yang, K. C.

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

Zhang, X. D.

Zhang, X. H.

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

Zhao, H. J.

Zhao, W. J.

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

Zheng, Y.

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

Zhu, X.

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

Appl. Opt. (3)

J. Atmos. Ocean. Technol. (1)

M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004).
[CrossRef]

J. Biomed. Opt. (1)

X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[CrossRef] [PubMed]

J. Geophys. Res. (1)

P. J. Mulhearn, “Distribution of Microbubbles in Coastal Waters,” J. Geophys. Res. 86(C7), 6429–6434 (1981).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007).
[CrossRef]

M. Xia, K. C. Yang, X. H. Zhang, J. H. Rao, Y. Zheng, and D. Tan, “Monte Carlo simulation of backscattering signal from bubbles under water,” J. Opt. A, Pure Appl. Opt. 8(3), 350–354 (2006).
[CrossRef]

J. Phys. D Appl. Phys. (1)

K. C. Yang, X. Zhu, Y. Li, J. Z. Lin, H. Yang, and Z. G. Li, “Polarization compression of large dynamic range laser returned signals from water surface and underwater,” J. Phys. D Appl. Phys. 35(9), 935–938 (2002).
[CrossRef]

Limnol. Oceanogr. (2)

A. Stigebrandt, “Computations of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas,” Limnol. Oceanogr. 36, 444–454 (1991).
[CrossRef]

H. Loisel, X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007).
[CrossRef]

Proc. SPIE (1)

D. Stramski, “Gas microbubbles: an assessment of their significance to light scattering in quiescent seas,” Proc. SPIE 2258, 704–710 (1994).
[CrossRef]

Science (1)

B. D. Johnson and R. C. Cooke, “Generation of Stabilized Microbubbles in Seawater,” Science 213(4504), 209–211 (1981).
[CrossRef] [PubMed]

Other (1)

Y. Liu, “Automatic detecting system for ship wakes in SAR images,” in Fifth World Congress on Intelligent Control and Automation (IEEE, 2004), pp. 3032–3036.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Simulated backscatter of laser pulse in water

Fig. 2
Fig. 2

Experiment setup: underwater lidar system and bubble generator

Fig. 3
Fig. 3

Layout of bubble generator

Fig. 4
Fig. 4

Small-scale bubbles induced by electrolysis reaction under microscope

Fig. 5
Fig. 5

Backscatter lidar signal of bubble-free water and water contains bubble that are 10-200 μm in diameter

Fig. 6
Fig. 6

Backscatter lidar signal of bubble-free water and water contains bubbles that are 1-10mm in diameter

Fig. 7
Fig. 7

Processed experiment data (corresponding to curves in Fig. 5)

Fig. 8
Fig. 8

Influence of location of bubble cloud on backscatter lidar signal

Fig. 9
Fig. 9

Relationship between amplitude of bubble backscatter peak and location of bubble cloud

Fig. 10
Fig. 10

Relationship between amplitude of bubble backscatter peak and concentration of bubbles

Fig. 11
Fig. 11

Relationship between amplitude of the bubble backscatter peak and thickness of bubble cloud

Fig. 12
Fig. 12

Relationship between pulse width and thickness of bubble cloud

Tables (2)

Tables Icon

Table 1 Current and corresponding concentrations of bubble cloud

Tables Icon

Table 2 Thickness of bubble and the corresponding wires and current

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L=tc2nw.
V=AH,
2H2O+2eH2+2OH
t=Hw,
w=118gvd2,
V=22.4×1032×96485It,
N=V4π3(d/2)3,
CN=NAH=4.074×1013Id5A.

Metrics