Abstract

We report on the experimental and theoretical study of a self-phase-modulation-based regenerator at 42.6 Gbit/s with a return-to-zero 33% format. We point out some detrimental effects such as intrachannel interactions and Brillouin scattering. An efficient solution, relying on a self-phase-modulation-based pulse compressor in combination with the regenerator, is proposed to overcome these detrimental phenomena. The experimental demonstration shows the effectiveness of a wavelength-transparent regenerator at 42.6 Gbit/s with a sensitivity-improvement of more than 5 dB and an eye-opening improvement of 2.3 dB in a back-to-back configuration, as well as a 10 times maximum transmission distance improvement for a BER of 10−4.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
NALM-based, phase-preserving 2R regenerator of high-duty-cycle pulses

Taras I. Lakoba, Jake R. Williams, and Michael Vasilyev
Opt. Express 19(23) 23017-23028 (2011)

Cascaded phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(26) 31729-31734 (2014)

All-optical phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Thomas Richter, Colja Schubert, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(22) 27077-27085 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).
  2. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineering, Madrid, Spain, 1998), pp. 475–476.
  3. G. Raybon, Y. Su, J. Leuthold, and R. J. Essiambre, T.-H.-. Her, C. Joergensen, P. l. Steinvurze, K. Dreyer, and K. S. Feder, “40 Gbits/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communication Conference (Anaheim, USA, 2002), Paper PD FD 10, pp 1–3.
  4. T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
    [Crossref]
  5. M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11018 .
    [Crossref] [PubMed]
  6. M. Matsumoto, Y. Shimada, and H. Sakaguchi, “Two-stage SPM-based all-optical 2R regeneration by directionnal use of a highly nonlinear fiber,” IEEE J. Quantum Electron. 45(1), 51–58 (2009).
    [Crossref]
  7. M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
    [Crossref]
  8. B. E. Olsson and D. J. Blumenthal, “Pulse restoration by filtering of self-phase modulation broadened optical spectrum,” J. Lightwave Technol. 20(7), 1113–1117 (2002).
    [Crossref]
  9. M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, “Optical 40-Gb/s 3R Regenerator with a combination of the SPM and XAM effects for all-optical networks,” J. Lightwave Technol. 24(3), 1142–1148 (2006).
    [Crossref]
  10. L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-2264 .
    [Crossref] [PubMed]
  11. Y. Su, G. Raybon, and R. J. Essiambre, “All-optical 2R regeneration of 40 Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
    [Crossref]
  12. V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
    [Crossref] [PubMed]
  13. C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
    [Crossref]
  14. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-8-5100 .
    [Crossref] [PubMed]
  15. C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
    [Crossref]
  16. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J. C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14(5), 1737–1747 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1737 .
    [Crossref] [PubMed]
  17. T. I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15(16), 10061–10074 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-16-10061 .
    [Crossref] [PubMed]
  18. T. N. Nguyen, T. Chartier, and J.-C. Simon, “Simple Rules and Chart to Design an All-optical SPM-based Regenerator,” in European Conference on Lasers and Electro-Optics (Munich, Germany, 2009), paper. CD.P.18.
  19. G. P. Agrawal, Nonlinear Fiber Optics, third Ed., (San Francisco, CA: Academic Press, 2001).
  20. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-11-1938 .
    [Crossref]
  21. J. E. Rothenberg, “Colliding visible picosecond pulses in optical fibers,” Opt. Lett. 15(8), 443–445 (1990), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-15-8-443 .
    [Crossref] [PubMed]
  22. P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,” Opt. Lett. 24(21), 1454–1456 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-21-1454 .
    [Crossref]
  23. R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
    [Crossref]
  24. Y. Yang, C. Lou, H. Zhou, J. Wang, and Y. Gao, “Simple pulse compression scheme based on filtering self-phase modulation-broadened spectrum and its application in an optical time-division multiplexing system,” Appl. Opt. 45(28), 7524–7528 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-28-7524 .
    [Crossref] [PubMed]
  25. N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett. 5(3), 304–306 (1993).
    [Crossref]
  26. Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
    [Crossref]

2009 (2)

M. Matsumoto, Y. Shimada, and H. Sakaguchi, “Two-stage SPM-based all-optical 2R regeneration by directionnal use of a highly nonlinear fiber,” IEEE J. Quantum Electron. 45(1), 51–58 (2009).
[Crossref]

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

2008 (4)

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[Crossref]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-2264 .
[Crossref] [PubMed]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-11-1938 .
[Crossref]

2007 (2)

2006 (5)

2005 (1)

2004 (1)

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

2003 (1)

Y. Su, G. Raybon, and R. J. Essiambre, “All-optical 2R regeneration of 40 Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[Crossref]

2002 (1)

1999 (2)

P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,” Opt. Lett. 24(21), 1454–1456 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-21-1454 .
[Crossref]

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[Crossref]

1993 (1)

N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett. 5(3), 304–306 (1993).
[Crossref]

1990 (1)

Bergano, N. S.

N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett. 5(3), 304–306 (1993).
[Crossref]

Blumenthal, D. J.

Bramerie, L.

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J. C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14(5), 1737–1747 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1737 .
[Crossref] [PubMed]

Chartier, T.

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J. C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14(5), 1737–1747 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1737 .
[Crossref] [PubMed]

Daikoku, M.

Davidsion, C. R.

N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett. 5(3), 304–306 (1993).
[Crossref]

Eggleton, B. J.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[Crossref] [PubMed]

Essiambre, R. J.

Y. Su, G. Raybon, and R. J. Essiambre, “All-optical 2R regeneration of 40 Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[Crossref]

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[Crossref]

Fatome, J.

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

Finot, C.

Freude, W.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[Crossref]

Fu, L. B.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[Crossref] [PubMed]

Gao, Y.

Gay, M.

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J. C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14(5), 1737–1747 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1737 .
[Crossref] [PubMed]

Girault, G.

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

Headley, C.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

Her, T.-H.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

Joindot, M.

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J. C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14(5), 1737–1747 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1737 .
[Crossref] [PubMed]

Kerfoot, F. W.

N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett. 5(3), 304–306 (1993).
[Crossref]

Kibler, B.

Kouloumentas, C.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[Crossref]

Lakoba, T. I.

Le, Q. T.

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

Leuthold, J.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[Crossref]

Littler, I. C. M.

Lou, C.

Luther-Davies, B.

Mamyshev, P. V.

Mamysheva, N. A.

Matsumoto, M.

M. Matsumoto, Y. Shimada, and H. Sakaguchi, “Two-stage SPM-based all-optical 2R regeneration by directionnal use of a highly nonlinear fiber,” IEEE J. Quantum Electron. 45(1), 51–58 (2009).
[Crossref]

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11018 .
[Crossref] [PubMed]

Mikkelsen, B.

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[Crossref]

Moss, D. J.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[Crossref] [PubMed]

Mukasa, K.

Nguyen, T.

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

Nguyen, T. N.

Olsson, B. E.

Otani, T.

Parmigiani, F.

Petropoulos, P.

Pitois, S.

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

Provost, L.

Provost, L. A.

Raybon, G.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

Y. Su, G. Raybon, and R. J. Essiambre, “All-optical 2R regeneration of 40 Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[Crossref]

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[Crossref]

Richardson, D. J.

Rochette, M.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[Crossref] [PubMed]

Rothenberg, J. E.

Ruan, Y. L.

Sakaguchi, H.

M. Matsumoto, Y. Shimada, and H. Sakaguchi, “Two-stage SPM-based all-optical 2R regeneration by directionnal use of a highly nonlinear fiber,” IEEE J. Quantum Electron. 45(1), 51–58 (2009).
[Crossref]

Shimada, Y.

M. Matsumoto, Y. Shimada, and H. Sakaguchi, “Two-stage SPM-based all-optical 2R regeneration by directionnal use of a highly nonlinear fiber,” IEEE J. Quantum Electron. 45(1), 51–58 (2009).
[Crossref]

Shokooh-Saremi, M.

Simon, J.

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

Simon, J. C.

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J. C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14(5), 1737–1747 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1737 .
[Crossref] [PubMed]

Su, Y.

Y. Su, G. Raybon, and R. J. Essiambre, “All-optical 2R regeneration of 40 Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[Crossref]

Ta’eed, V. G.

Ta'eed, V. G.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Tanaka, H.

Tomkos, I.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[Crossref]

Vasilyev, M.

Vorreau, P.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[Crossref]

Wabnitz, S.

Wang, J.

Yang, Y.

Yoshikane, N.

Zhou, H.

Appl. Opt. (1)

Electron. Lett. (1)

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Matsumoto, Y. Shimada, and H. Sakaguchi, “Two-stage SPM-based all-optical 2R regeneration by directionnal use of a highly nonlinear fiber,” IEEE J. Quantum Electron. 45(1), 51–58 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (5)

Y. Su, G. Raybon, and R. J. Essiambre, “All-optical 2R regeneration of 40 Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[Crossref]

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[Crossref]

N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett. 5(3), 304–306 (1993).
[Crossref]

Q. T. Le, L. Bramerie, M. Gay, G. Girault, M. Joindot, and J. C. Simon, “Noise Tolerance Assessment and System Design Discussion of a Saturable-Absorption-Based All-Optical 2R Regenerator,” IEEE Photon. Technol. Lett. 21(9), 590–592 (2009).
[Crossref]

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Finot, T. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (5)

T. N. Nguyen, T. Chartier, and J.-C. Simon, “Simple Rules and Chart to Design an All-optical SPM-based Regenerator,” in European Conference on Lasers and Electro-Optics (Munich, Germany, 2009), paper. CD.P.18.

G. P. Agrawal, Nonlinear Fiber Optics, third Ed., (San Francisco, CA: Academic Press, 2001).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002).

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineering, Madrid, Spain, 1998), pp. 475–476.

G. Raybon, Y. Su, J. Leuthold, and R. J. Essiambre, T.-H.-. Her, C. Joergensen, P. l. Steinvurze, K. Dreyer, and K. S. Feder, “40 Gbits/s pseudo-linear transmission over one million kilometers,” in Proceedings of Optical Fiber Communication Conference (Anaheim, USA, 2002), Paper PD FD 10, pp 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Setup for the nonlinear interaction experiments. VA: variable attenuator; DSF: dispersion-shifted fiber.

Fig. 2
Fig. 2

(a) Experimental (triangles) and theoretical (solid line) transfer functions of the regenerator. Inset: output optical data stream for a working average power of 450 mW; (b) Eye diagram of the regenerator output signal for a working power of 450 mW.

Fig. 3
Fig. 3

Numerical simulation results. (a) Input signal; (b) Regenerator output signal for an input average power of 450 mW; (c) Intensity and chirp profiles of the pulses after propagation in the DSF fiber and before spectral filtering.

Fig. 4
Fig. 4

Experimental transfer function of the regenerator for a 4-km long DSF and 6-ps input pulse width produced from the compressor. Inset shows the experimental data sequence at optimum power (320 mW).

Fig. 5
Fig. 5

(a) Evolution of the reflected power as a function of input power in the 4–km long DSF fiber for 4 different input pulse widths; (b) Spectrum of the reflected signal for a pulse width of 8.5 ps with an input power of 300 mW.

Fig. 6
Fig. 6

Experimental setup for the proposed wavelength-transparent double-stage regenerator. FF: Flat-top filter; GF: Gaussian filter; EDFA: Erbium doped fiber amplifier; DSF: dispersion-shifted fiber.

Fig. 7
Fig. 7

Experiment setup for back-to-back characterizations. VA: variable attenuator; PC: polarization controllor.

Fig. 8
Fig. 8

BER evolution as a function of the power received on the photodiode.

Fig. 9
Fig. 9

(a) BER evolution as a function of the decision threshold for an OSNR of 17.5 dB/1nm; (b) Eye-openning improvement as a function of the OSNR.

Fig. 10
Fig. 10

Experimental setup of the short recirculation loop. Tx: Transmitter; Rx: Receiver; A/O: Accouter optical switch; PC: polarazation controller; VA: variable attenuator; DSF: dispersion shifted fiber; EDFA: Erbium doped fiber amplifier.

Fig. 11
Fig. 11

(a) Evolution of BER as a function of laps in the loop, OSNR = 23.5 dB/1nm, 1 lap = 10 km; (b) Noise resistance assessement as a function of the OSNR for different output BER.

Metrics