Abstract

We show by pump-probe spectroscopy that the optical response of a fishnet metamaterial can be modulated on the femtosecond time scale. The modulation dynamics is dominated by pump-induced changes in the constituting dielectric medium, but the strength of modulation is dramatically enhanced through the plasmon resonance. The pump-induced spectral responses of the metamaterial provide understanding on how the resonance is modified by pump excitation. Our study suggests that metamaterials can be used as high-speed amplitude/phase modulators with terahertz-bandwidth.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  5. E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).
  6. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  7. S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005).
    [CrossRef] [PubMed]
  8. W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
    [CrossRef]
  9. A. Taflove and S. Hagness, Comupational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  10. W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
    [CrossRef]
  11. M. Born and E. Wolf, Principle of Optics (Cambridge University Press, 1999).
  12. A. V. Kildishev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23(3), 423–433 (2006).
    [CrossRef]
  13. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [CrossRef]
  14. D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008).
    [CrossRef]
  15. A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
    [CrossRef]
  16. E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
    [CrossRef]
  17. C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
    [CrossRef]
  18. M. Kubinyi, A. Grofcsik, and W. J. Jones, “Laser spectroscopic study of photoinduced picosecond processes in amorphous and polycrystalline silicon films,” (Elsevier Science Bv, 1997), pp. 121–124.

2009 (2)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

2008 (1)

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008).
[CrossRef]

2007 (4)

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

2006 (2)

2005 (2)

S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2003 (1)

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

1993 (1)

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

1990 (1)

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Averitt, R. D.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Bratkovsky, A.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

Bratkovsky, A. M.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

Brueck, S. R. J.

Cai, W. S.

Carmody, C.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
[CrossRef]

Chang, C. L.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Chettiar, U. K.

Cho, D.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

Cho, D. J.

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008).
[CrossRef]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Davidson, B. N.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Drachev, V. P.

Esser, A.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Fan, W. J.

Fang, N.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Gaarder, A.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
[CrossRef]

Harmon, E. S.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

Jagadish, C.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
[CrossRef]

Kildishev, A. V.

Kim, E.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Kurz, H.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Li, X. M.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Liu, Y.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Lucovsky, G.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Malloy, K. J.

Marcinkevicius, S.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
[CrossRef]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Melloch, M. R.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

Nemanich, R. J.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Nolte, D. D.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

Osgood, R. M.

Otsuka, N.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

Padilla, W. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Panoiu, N. C.

Parsons, G. N.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Ponizovskaya, E.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Sarychev, A. K.

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Seibert, K.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Shalaev, V. M.

Shen, Y. R.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008).
[CrossRef]

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Sun, C.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tan, H. H.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
[CrossRef]

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Tong, W.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Wang, C.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Wang, F.

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008).
[CrossRef]

Wang, S. Y.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Williams, R. S.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

Woodall, J. M.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

Wu, W.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

Xia, Q. F.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

Yu, Z.

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

Yu, Z. N.

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

Yuan, H. K.

Zhang, S.

Zhang, X.

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008).
[CrossRef]

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009).
[CrossRef]

W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007).
[CrossRef]

J. Appl. Phys. (1)

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (3)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008).
[CrossRef]

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990).
[CrossRef]

Science (3)

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Other (3)

A. Taflove and S. Hagness, Comupational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

M. Kubinyi, A. Grofcsik, and W. J. Jones, “Laser spectroscopic study of photoinduced picosecond processes in amorphous and polycrystalline silicon films,” (Elsevier Science Bv, 1997), pp. 121–124.

M. Born and E. Wolf, Principle of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fishnet structure (a) SEM image of a sample. Its grid-like structure is composed of thin wires (top: 26nm, bottom: 117nm) and thick wires (top: 124nm, bottom: 218nm) orthogonal to each other. Inset shows the polarizations of the electric field ( E ) and magnetic field ( H ) of incident light. (b) Schematic of the fishnet showing the thicknesses of the Ag(25nm)/ a-Si (80nm)/Ag(25nm) sandwiched layers. The tapered sidewall results from the fabrication process.

Fig. 2
Fig. 2

Experimental setup to measure T = |t^|2 , R = |r^|2 , ϕt and ϕr of the complex transmission ( t^ ) and reflection ( r^ ) coefficients. A Michelson-type interferometer is implemented for absolute phase measurement. The near-infrared tunable probe pulses come from a super-continuum fiber laser and an OPA system, respectively, for measurements without and with pump. The pump pulses at 800 nm are from a 1-kHz Ti:Sapphire laser. The pump-probe time delay is adjusted by a motorized mirror stage (not shown). The flip mirror is used as a reference for reflection measurements.

Fig. 3
Fig. 3

Experimentally measured spectra of T, R, ϕt and ϕr with and without pump. (a) T. (b) ϕt . (c) ΔT/T and Δϕt . (d) R. (e) ϕr . (f) ΔR/R and Δϕr . The pump-induced changes ΔT/T, ΔR/R, Δϕt and Δϕr were directly measured and added to the blue solid curves of (a,b,d,e) to obtain the corresponding red dashed curves for the case with pump (300μJ/cm2).

Fig. 4
Fig. 4

Experimentally deduced n^ , ε^ and μ^ from t^ and r^ with and without pump. (a) Re( n^ ). (b) Im( n^ ). (c) Re( ε^ ). (d) Im( ε^ ). (e) Re( μ^ ). (f) Im( μ^ ). The blue solid and red dash curves are deduced from those of (a,b,d,e) of Fig. 2 using Eq. (1).

Fig. 5
Fig. 5

Pump-induced responses of the fishnet and a-Si film. (a) Normalized changes of transmission and reflection versus pump fluence. (b) Pump-induced absorptions versus probe-pump time delay. Note the different scales for fishnet and a-Si film.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n^=1kodcos1[1r^2+nst^2(ns+1)t^+r^t^(ns1)]
z^=X±X2+1ns
ΔTb=(Tbnb)Δnb+(Tbkb)Δkb and ΔRb=(Rbnb)Δnb+(Rbkb)Δkb.

Metrics