Abstract

We study soliton-effect pulse compression in the single-cycle region in dielectric-coated metallic hollow waveguides filled with a noble gas exploiting the broad region of anomalous dispersion in these waveguides. We predict the compression of a 20-fs pulse to a FWHM duration of 1.7 fs with an energy of 6 µJ and study the physical factors determining the limitations on shortest pulses in the single-cycle regime.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides

A. Husakou and J. Herrmann
Opt. Express 16(6) 3834-3843 (2008)

Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers

Marco V. Tognetti and Helder M. Crespo
J. Opt. Soc. Am. B 24(6) 1410-1415 (2007)

Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires

Mark A. Foster, Alexander L. Gaeta, Qiang Cao, and Rick Trebino
Opt. Express 13(18) 6848-6855 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [Crossref]
  2. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
    [Crossref] [PubMed]
  3. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  4. M. Nisoli, S. de Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2797 (1996).
    [Crossref]
  5. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8 fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
    [Crossref] [PubMed]
  6. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
    [Crossref] [PubMed]
  7. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
    [Crossref]
  8. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
    [Crossref] [PubMed]
  9. A. Baltuska, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
    [Crossref]
  10. C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
    [Crossref]
  11. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
    [Crossref] [PubMed]
  12. S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
    [Crossref]
  13. G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 2001).
  14. P. Russel, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  15. M. A. Foster, A. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
    [Crossref] [PubMed]
  16. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
    [Crossref] [PubMed]
  17. K. Chan and W. Cao, “Improved soliton-effect pulse compression by combined action of negative third-order dispersion and Raman self-scattering in optical fibers,” J. Opt. Soc. Am. B 15, 2371–2375 (1998).
    [Crossref]
  18. Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
    [Crossref]
  19. M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers,” J. Opt. Soc. Am B 24, 1410–1415 (2007).
    [Crossref]
  20. A. D. Bessonov and A.M. Zheltikov, “Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers,” Phys. Rev. E 73, 066618 (2006).
    [Crossref]
  21. A. Husakou and J. Herrmann, “Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides,” Opt. Express 16, 3834–3843 (2008).
    [Crossref] [PubMed]
  22. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [Crossref] [PubMed]
  23. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
    [Crossref] [PubMed]
  24. A. Husakou and J. Herrmann, “High-power, high-coherence supercontinuum generation in dielectric-coated metallic hollow waveguides,” Opt. Express 17, 12481–12492 (2009).
    [Crossref] [PubMed]
  25. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1205 (1978).
    [Crossref]
  26. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–780 (2001).
    [Crossref] [PubMed]
  27. E. R. Peck and D. J. Fisher, “Dispersion of Argon,” J. Opt. Soc. Am. 54, 1362–1364 (1964).
    [Crossref]
  28. A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [Crossref] [PubMed]
  29. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Comm. 56, 67–72 (1985).
    [Crossref]

2009 (1)

2008 (1)

2007 (2)

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers,” J. Opt. Soc. Am B 24, 1410–1415 (2007).
[Crossref]

2006 (4)

A. D. Bessonov and A.M. Zheltikov, “Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers,” Phys. Rev. E 73, 066618 (2006).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (1)

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

2003 (3)

2002 (1)

2001 (3)

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–780 (2001).
[Crossref] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

2000 (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

M. Nisoli, S. de Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2797 (1996).
[Crossref]

1995 (1)

1985 (1)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Comm. 56, 67–72 (1985).
[Crossref]

1978 (1)

1964 (2)

E. R. Peck and D. J. Fisher, “Dispersion of Argon,” J. Opt. Soc. Am. 54, 1362–1364 (1964).
[Crossref]

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Abel, T.

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 2001).

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Apolonski, A.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Baltuska, A.

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Berge, L.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

Bessonov, A. D.

A. D. Bessonov and A.M. Zheltikov, “Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers,” Phys. Rev. E 73, 066618 (2006).
[Crossref]

Biegert, J.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8 fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Cao, Q.

Cao, W.

Cavalieri, A. L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Chan, K.

Corkum, P. B.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

Couairon, A.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Crespo, H. M.

M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers,” J. Opt. Soc. Am B 24, 1410–1415 (2007).
[Crossref]

De Silvestri, S.

Drescher, M.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

Engeness, T. D.

Fiess, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Fink, Y.

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Fisher, D. J.

Foster, M. A.

Fuji, T.

Fuyun, L.

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

Gaeta, A.

Gallagher, M.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Goulielmakis, E.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Harrington, J. A.

Hauri, C.P.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Heinrich, A.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

Helbing, F.W.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

Helml, W.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Hensley, C.

Hentschel, M.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

Herrmann, J.

Horvath, B.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Husakou, A.

Ibanescu, M.

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Jacobs, S. A.

Jian, W.

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

Joannopoulous, J. D.

Johnson, S. G.

Keller, U.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8 fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

Kienberger, R.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

Kobayashi, T.

Koch, K.

Kornelis, W.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

Krausz, F.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Lederer, F.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

Lehmeier, H. J.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Comm. 56, 67–72 (1985).
[Crossref]

Leupacher, W.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Comm. 56, 67–72 (1985).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Marom, E.

Matsuura, Y.

Morita, R.

Mysyrowicz, A.

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

Nisoli, M.

Oka, K.

Ouzounov, D.

Peck, E. R.

Penzkofer, A.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Comm. 56, 67–72 (1985).
[Crossref]

Pervak, V.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Pshenichnikov, M. S.

Reider, G. A.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

Russel, P.

P. Russel, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Sansone, G.

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Scheidemante, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Schenkel, B.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Schnürer, M.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

Schultue, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Shiping, Y.

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

Shumin, Z.

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

Skorobogatiy, M.

Skupin, S.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

Sokollik, T.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

Soljacic, M.

Spielmann, Ch.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

Stagira, S.

Steinmeyer, G.

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref] [PubMed]

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

Stibenz, G.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref] [PubMed]

Suguro, A.

Svelto, O.

Tempea, G.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

Tognetti, M. V.

M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers,” J. Opt. Soc. Am B 24, 1410–1415 (2007).
[Crossref]

Trebino, R.

Uiberacker, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Veisz, L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Venkateraman, N.

Vozzi, C.

Wei, Z.

Weisberg, O.

Wencheng, X.

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

Wiersma, D. A.

Won, D.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Xiaoyi, D.

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

Yakovlev, V. S.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Yamane, K.

Yamashita, M.

Yariv, A.

Yeh, P.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, Z.

Zhavoronkov, N.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274–276 (2006).
[Crossref] [PubMed]

Zheltikov, A.M.

A. D. Bessonov and A.M. Zheltikov, “Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers,” Phys. Rev. E 73, 066618 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79, 673–677 (2005).
[Crossref]

Appl. Phys. Lett. (1)

M. Nisoli, S. de Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2797 (1996).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

J. Opt. Soc. Am B (1)

M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers,” J. Opt. Soc. Am B 24, 1410–1415 (2007).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua,” New J. Phys. 9, 242–247 (2007).
[Crossref]

Opt. Comm. (2)

Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, “Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and raman self-scattering,’ Opt. Comm. 237, 1–8 (2004).
[Crossref]

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Comm. 56, 67–72 (1985).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys Rev E (1)

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys Rev E 74, 056604 (2006).
[Crossref]

Phys. Rev. E (1)

A. D. Bessonov and A.M. Zheltikov, “Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers,” Phys. Rev. E 73, 066618 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Science (3)

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-Ray pulses approaching the attosecond frontier,” Science 291, 1923–1927 (2001).
[Crossref] [PubMed]

P. Russel, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311, 1583–1586 (2006).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross-section (a), loss and GVD (b) of an argon-filled metal-dielectric hollow waveguide with a diameter of 60 µm. The silver cladding is coated by a fused-silica layer with thickness a of 40 nm. The loss is shown by the green curve and the GVD is presented for a pressure of 13 atm by the red curve.

Fig. 2.
Fig. 2.

Evolution of the temporal shape (a),(c),(e) and spectrum (b),(d),(f) for a 17-TW/cm2, 20-fs pulse in a waveguide with D=60 µm and a=40 nm. The input wavelength is 1037 nm, the propagation length is 1.9 cm (a),(b), 3.8 cm (c),(d), and 4.74 cm (e),(f).

Fig. 3.
Fig. 3.

Dependence of the output pulse duration on the input pulse duration. The soliton number and the input wavelength, as well as the waveguide parameters are the same as in Fig. 2. The propagation distance is optimized separately for each input duration. The gray curve corresponds to the compression factor Fc =10 predicted by the NSE.

Fig. 4.
Fig. 4.

Dependence of the compression factor F on the input wavelength. The input-pulse soliton number and duration, as well as the waveguide parameters are the same as in Fig. 2. The propagation length is optimized separately for each input wavelength. The green curve shows the wavelength dependence of the TOD parameter.

Fig. 5.
Fig. 5.

Dependence of the compression factor F on the TOD parameter.

Fig. 6.
Fig. 6.

Temporal shapes of the pulse after 4.74 cm propagation for an input CEO of 0 (red solid curve), π/4 (green long-dashed curve), π/2 (blue dash-dotted curve) and 3π/4 (magenta dotted curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E(z,ω)z=i (β(ω)ωngc)E(z,ω)α2(ω)E(z,ω)+iω22c2ε0β(ω)PNL(z,ω)
PNL(z,r,t)=ε0χ3E3(z,r,t)

Metrics