Abstract

Scalable optical space switches compatible with high bit rates which can be reconfigured on-the-fly are needed to increase the flexibility of optical networks. We present the design of integrated Fabry-Perot filters working at oblique incidence, which can be used to build optical space switches. A comprehensive planar waveguide optimization was conducted to minimize radiation losses in the deep-etch features forming the filter mirrors. Four high order cavities were coupled to create a 200 GHz comb wavelength response with passbands larger than 50 GHz and extinction ratio greater than 20 dB over the entire C-band. Gaussian beam propagation analysis showed that the minimum beam waist required to avoid distortion increases rapidly with incident angle.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Fabry and A. Perot, “Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air,” Ann. Chem. Phys. 12, 459–501 (1897).
  2. M. Xiaohua and K. Geng-Sheng, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41, S16–S23 (2003).
  3. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [CrossRef] [PubMed]
  4. L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw. 50(2), 268–287 (2006).
    [CrossRef]
  5. B. P. Keyworth, “ROADM subsystems and technologies,” in Optical Fiber Communication Conference,2005. Technical Digest. OFC/NFOEC. vol. 3 (Institute of Electrical and Electronics Engineers, New York, 2005), p. 4.
  6. T. S. A. El-Bawab, Optical switching, (Springer, 2006).
  7. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
    [CrossRef]
  8. S. Blair and J. Goeckeritz, “Effect of vertical mode matching on defect resonances in one-dimensional photonic crystal slabs,” J. Lightwave Technol. 24(3), 1456–1461 (2006).
    [CrossRef]
  9. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
    [CrossRef]
  10. G. W. Burr, S. Diziain, and M. P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16(9), 6302–6316 (2008).
    [CrossRef] [PubMed]
  11. R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
    [CrossRef]
  12. G. R. Hadley, “Out-of-plane losses of line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 14(5), 642–644 (2002).
    [CrossRef]
  13. S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001).
    [CrossRef]
  14. K. J. Kasunic, “Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings,” J. Lightwave Technol. 18(3), 425–429 (2000).
    [CrossRef]
  15. T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. De Angelis, C. R. Stanley, H. M. van Driel, and J. S. Aitchison, “Design, fabrication, and characterization of deep-etched waveguide gratings,” J. Lightwave Technol. 23(11), 3832–3842 (2005).
    [CrossRef]
  16. T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
    [CrossRef]
  17. M. V. Kotlyar, L. O'Faolain, A. B. Krysa, and T. F. Krauss, “Electrooptic tuning of InP-based microphotonic Fabry-Perot filters,” J. Lightwave Technol. 23(6), 2169–2174 (2005).
    [CrossRef]
  18. C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
    [CrossRef]
  19. P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
    [CrossRef]
  20. H. K. Tsang, M. W. K. Mak, L. Y. Chan, J. B. D. Soole, C. Youtsey, and I. Adesida, “Etched cavity InGaAsP/InP waveguide Fabry-Perot filter tunable by current injection,” J. Lightwave Technol. 17(10), 1890–1895 (1999).
    [CrossRef]
  21. G. R. Zhou, X. Li, and N. N. Feng, “Design of deeply etched antireflective waveguide terminators,” IEEE J. Quantum Electron. 39(2), 384–391 (2003).
    [CrossRef]
  22. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
    [CrossRef]
  23. C. Ciminelli, F. Peluso, and M. N. Armenise, “2D guided-wave photonic band gap single and multiple cavity filters,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (Institute of Electrical and Electronics Engineers, New York, 2005) pp. 404–409.
  24. H. A. Macleod, Thin-film optical filter, 3rd ed. (Institute of Physics Publishing, 2001).
  25. H. Vandestadt and J. M. Muller, “Multimirror Fabry-Perot Interferometers,” J. Opt. Soc. Am. A 2(8), 1363–1370 (1985).
    [CrossRef]
  26. E. Hecht, Optics 4th ed. (Addison-Wesley, 2002).
  27. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  28. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis: a signal processing approach. (Wiley, 1999).
  29. M. Ménard, and A. G. Kirk, “Broadband Integrated Fabry-Perot Electro-Optic Switch,” in International Conference on Photonics in Switching, 2008, (Institute of Electrical and Electronics Engineers, New York, 2008).
  30. K. D. Hendrix and C. K. Carniglia, “Path of a beam of light through an optical coating,” Appl. Opt. 45(11), 2410–2421 (2006).
    [CrossRef] [PubMed]
  31. R. E. Klinger, C. A. Hulse, C. K. Carniglia, and R. B. Sargent, “Beam displacement and distortion effects in narrowband optical thin-film filters,” Appl. Opt. 45(14), 3237–3242 (2006).
    [CrossRef] [PubMed]
  32. T. Tamir, “Nonspecular Phenomena in Beam Fields Reflected by Multilayered Media,” J. Opt. Soc. Am. A 3(4), 558–565 (1986).
    [CrossRef]
  33. T. Tamir and H. L. Bertoni, “Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,” J. Opt. Soc. Am. 61(10), 1397–1413 (1971).
    [CrossRef]
  34. I. J. Hodgkinson, and Q. h. Wu, Birefringent thin films and polarizing elements. (World Scientific, 1997).
  35. M. Ménard and A. G. Kirk, “Integrated Fabry-Perot Comb Switches: Transmission Experiments and Scalability.” in Proceedings of The 22nd Annual Meeting of the IEEE Photonics Society (Institute of Electrical and Electronics Engineers, New York, 2009), (to be published)

2008 (2)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

G. W. Burr, S. Diziain, and M. P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16(9), 6302–6316 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

2005 (3)

2004 (1)

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

2003 (2)

M. Xiaohua and K. Geng-Sheng, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41, S16–S23 (2003).

G. R. Zhou, X. Li, and N. N. Feng, “Design of deeply etched antireflective waveguide terminators,” IEEE J. Quantum Electron. 39(2), 384–391 (2003).
[CrossRef]

2002 (1)

G. R. Hadley, “Out-of-plane losses of line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 14(5), 642–644 (2002).
[CrossRef]

2001 (5)

S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001).
[CrossRef]

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
[CrossRef]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
[CrossRef]

2000 (2)

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

K. J. Kasunic, “Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings,” J. Lightwave Technol. 18(3), 425–429 (2000).
[CrossRef]

1999 (1)

1986 (1)

1985 (1)

1971 (1)

1897 (1)

C. Fabry and A. Perot, “Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air,” Ann. Chem. Phys. 12, 459–501 (1897).

Adesida, I.

Aitchison, J. S.

Anand, S.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

Baets, R.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
[CrossRef]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

Benisty, H.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

Benyoucef, M.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Beraud, A.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

Bernal, M. P.

Berrier, A.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

Bertoni, H. L.

Bienstman, P.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
[CrossRef]

Blair, S.

Bogaerts, W.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
[CrossRef]

Bordovsky, M.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Burr, G. W.

Carniglia, C. K.

Cassagne, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

Chan, L. Y.

De Angelis, C.

de Rossi, S.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

De Zutter, D.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
[CrossRef]

Diziain, S.

Dong, P.

Dunbar, L. A.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

Eriksson, N.

P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
[CrossRef]

Fabry, C.

C. Fabry and A. Perot, “Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air,” Ann. Chem. Phys. 12, 459–501 (1897).

Feng, N. N.

G. R. Zhou, X. Li, and N. N. Feng, “Design of deeply etched antireflective waveguide terminators,” IEEE J. Quantum Electron. 39(2), 384–391 (2003).
[CrossRef]

Ferrini, R.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

Forchel, A.

S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001).
[CrossRef]

Fujita, S.

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

Funato, M.

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

Geng-Sheng, K.

M. Xiaohua and K. Geng-Sheng, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41, S16–S23 (2003).

Gioannini, M.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Goeckeritz, J.

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Hadley, G. R.

G. R. Hadley, “Out-of-plane losses of line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 14(5), 642–644 (2002).
[CrossRef]

Hasnain, G.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Hatada, Y.

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

Heard, P. J.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Hendrix, K. D.

Houdre, R.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

Hulse, C. A.

Jouanin, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

Kasunic, K. J.

Kawakami, Y.

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

Kleckner, T. C.

Klinger, R. E.

Klopf, F.

S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001).
[CrossRef]

Kotani, T.

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

Kotlyar, M. V.

Krauss, T. F.

M. V. Kotlyar, L. O'Faolain, A. B. Krysa, and T. F. Krauss, “Electrooptic tuning of InP-based microphotonic Fabry-Perot filters,” J. Lightwave Technol. 23(6), 2169–2174 (2005).
[CrossRef]

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

Krysa, A. B.

Kuball, M.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Labilloy, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

Larsson, A.

P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
[CrossRef]

Li, X.

G. R. Zhou, X. Li, and N. N. Feng, “Design of deeply etched antireflective waveguide terminators,” IEEE J. Quantum Electron. 39(2), 384–391 (2003).
[CrossRef]

Linden, S.

Lipson, M.

Locatelli, A.

Mak, M. W. K.

Marinelli, C.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Mason, L.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw. 50(2), 268–287 (2006).
[CrossRef]

Modh, P.

P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
[CrossRef]

Modotto, D.

Mondia, J. P.

Morandotti, R.

Mukai, T.

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

Muller, J. M.

Mulot, M.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

Narukawa, Y.

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

O'Faolain, L.

Penty, R. V.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Perot, A.

C. Fabry and A. Perot, “Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air,” Ann. Chem. Phys. 12, 459–501 (1897).

Plant, D.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw. 50(2), 268–287 (2006).
[CrossRef]

Preble, S. F.

Reithmaier, J. P.

S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001).
[CrossRef]

Rennon, S.

S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001).
[CrossRef]

Rorison, J. M.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Sargent, L. J.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Sargent, R. B.

Schneider, R. P.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Smith, C. J. M.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

Soole, J. B. D.

Stanley, C. R.

Suhara, T.

P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
[CrossRef]

Takeuchi, T.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Talneau, A.

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

Tamir, T.

Teixeiro, M. Q.

P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
[CrossRef]

Tsang, H. K.

van Driel, H. M.

Vandestadt, H.

Vinokurov, A.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw. 50(2), 268–287 (2006).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Weisbuch, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

White, I. H.

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Xiaohua, M.

M. Xiaohua and K. Geng-Sheng, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41, S16–S23 (2003).

Youtsey, C.

Zhao, N.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw. 50(2), 268–287 (2006).
[CrossRef]

Zhou, G. R.

G. R. Zhou, X. Li, and N. N. Feng, “Design of deeply etched antireflective waveguide terminators,” IEEE J. Quantum Electron. 39(2), 384–391 (2003).
[CrossRef]

Ann. Chem. Phys. (1)

C. Fabry and A. Perot, “Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air,” Ann. Chem. Phys. 12, 459–501 (1897).

Appl. Opt. (2)

Appl. Phys. Lett. (3)

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000).
[CrossRef]

R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004).
[CrossRef]

C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001).
[CrossRef]

Comput. Netw. (1)

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw. 50(2), 268–287 (2006).
[CrossRef]

Electron. Lett. (1)

S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001).
[CrossRef]

IEEE Commun. Mag. (1)

M. Xiaohua and K. Geng-Sheng, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41, S16–S23 (2003).

IEEE J. Quantum Electron. (2)

P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001).
[CrossRef]

G. R. Zhou, X. Li, and N. N. Feng, “Design of deeply etched antireflective waveguide terminators,” IEEE J. Quantum Electron. 39(2), 384–391 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001).
[CrossRef]

G. R. Hadley, “Out-of-plane losses of line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 14(5), 642–644 (2002).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Opt. Express (2)

Opt. Quantum Electron. (1)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[CrossRef]

Phys Status Solidi C (1)

T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005).
[CrossRef]

Other (9)

B. P. Keyworth, “ROADM subsystems and technologies,” in Optical Fiber Communication Conference,2005. Technical Digest. OFC/NFOEC. vol. 3 (Institute of Electrical and Electronics Engineers, New York, 2005), p. 4.

T. S. A. El-Bawab, Optical switching, (Springer, 2006).

C. Ciminelli, F. Peluso, and M. N. Armenise, “2D guided-wave photonic band gap single and multiple cavity filters,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (Institute of Electrical and Electronics Engineers, New York, 2005) pp. 404–409.

H. A. Macleod, Thin-film optical filter, 3rd ed. (Institute of Physics Publishing, 2001).

E. Hecht, Optics 4th ed. (Addison-Wesley, 2002).

C. K. Madsen, and J. H. Zhao, Optical filter design and analysis: a signal processing approach. (Wiley, 1999).

M. Ménard, and A. G. Kirk, “Broadband Integrated Fabry-Perot Electro-Optic Switch,” in International Conference on Photonics in Switching, 2008, (Institute of Electrical and Electronics Engineers, New York, 2008).

I. J. Hodgkinson, and Q. h. Wu, Birefringent thin films and polarizing elements. (World Scientific, 1997).

M. Ménard and A. G. Kirk, “Integrated Fabry-Perot Comb Switches: Transmission Experiments and Scalability.” in Proceedings of The 22nd Annual Meeting of the IEEE Photonics Society (Institute of Electrical and Electronics Engineers, New York, 2009), (to be published)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of a 3x3 switch with tunable coupled cavity Fabry-Perot filters in a crossbar configuration.

Fig. 2
Fig. 2

Variables used in the planar waveguide optimization

Fig. 3
Fig. 3

Radiation loss vs. refractive index contrast and waveguide core thickness for (a) a 3 μm, and (b) 4 μm. The optimum top cladding thickness was found for each waveguide configuration.

Fig. 4
Fig. 4

Optimum top cladding thickness vs. refractive index contrast and waveguide core thickness for 4μm deep and half a wavelength long trench.

Fig. 5
Fig. 5

(a) Two intensity profiles with the same 1/e2 width and (b) their angular spectrum. The blue line shows the profile for the optimum waveguide configuration for a 4 μm trench described in Table 1. The red line is corresponds to a waveguide with an index contrast of 0.8%, a top cladding of 0.35 μm, and a core of 0.75 μm. Its radiation loss for a half-wavelength trench is 14%. The green line in (a) indicates the wafer surface and trench position with respect to the intensity profiles.

Fig. 6
Fig. 6

Minimum radiation losses vs. etch depth for a first order trench.

Fig. 7
Fig. 7

Minimum radiation losses vs. trench width for different etch depth.

Fig. 8
Fig. 8

Radiation losses vs. etch depth for the optimum waveguide configurations described in Table 1.

Fig. 9
Fig. 9

Filter normalized transmission response as a function of the mirrors trench width tolerance for (a) a design with double trench mirrors and (b) a design with single trench mirrors.

Fig. 10
Fig. 10

(a) Transmission response and (b) chromatic dispersion for filters with different mirror reflectivity calculated with the TMM. The filter with the low reflectivity is the 1st order design described in Table 2 below. At 1550.12 nm the mirror reflectivity is 10%, 51% and 66% for the 1st, 2nd and 3rd mirror, respectively. The 4th and 5th mirrors are identical to the 1st and 2nd. The high reflectivity filter has the same number of layers but the reflectivity of its 1st, 2nd and 3rd mirrors is 14%, 57% and 70% respectively.

Fig. 11
Fig. 11

Wavelength response in transmission and reflection for filters with (a) first and (b) second order mirrors.

Fig. 12
Fig. 12

Transmission efficiency vs. wavelength for input beams with different fraction of their angular spectrum within the filter angular clear bandwidth.

Fig. 13
Fig. 13

Minimum 1/e Gaussian beam width for undistorted propagation through a four cavity filter as a function of incident angle.

Fig. 14
Fig. 14

Prototype wavelength response measured experimentally and simulated with the Eigenmode expansion method in (a) transmission and (b) reflection.

Tables (2)

Tables Icon

Table 1 Optimum GaAs/AlGaAs waveguide configurations vs. trench depth

Tables Icon

Table 2 Four cavity filters layer characteristics at normal incidence

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

wo=2·1.945·λoπθneff

Metrics