Abstract

This paper presents a decent polymer material for fabricating optically-induced dielectrophoretic (ODEP) devices, which can manipulate microparticles or cells by using moving light patterns. A thin film of a bulk-heterojunction (BHJ) polymer, a mixture of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester, is used as a light-activated layer. When illuminated by a projected light beam, the photo-induced charge carriers created by the electron transfer of excitons at a donor/acceptor interface in the BHJ layer, disturbs the uniformly-distributed electric field applied on the ODEP devices. A negative DEP force is then generated by virtual electrodes defined by the optical images from a computer-programmable projector to manipulate microparticles, thus providing a functionalized platform for particle manipulation. The effect of the polymer thickness and composition on the magnitude of the generated DEP force has been extensively investigated. The maximum particle drag velocity and the force applied on 20.0 μm diameter polystyrene beads are measured to be approximately 202.2 μm/s and 38.2 pN, respectively, for a device with a 497.3-nm thick BHJ layer. The lifetime of the developed device is also explored (~5 hours), which is sufficient for applications of disposable ODEP devices. Therefore, the BHJ polymer may provide a promising candidate for future ODEP devices capable of nanoparticle and cell manipulation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
    [CrossRef] [PubMed]
  2. J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
    [CrossRef] [PubMed]
  3. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
    [CrossRef]
  4. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
    [CrossRef] [PubMed]
  5. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  6. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
    [CrossRef]
  7. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
    [CrossRef] [PubMed]
  8. Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
    [CrossRef] [PubMed]
  9. Y. H. Lin, C. M. Chang, and G. B. Lee, “Manipulation single DNA molecule by using optically-induced dielectrophoresis,” Opt. Express 17, 15318–15329 (2009).
    [CrossRef] [PubMed]
  10. Y. H. Lin and G. B. Lee, “An optically-induced cell lysis device using dielectrophoresis,” Appl. Phys. Lett. 94(3), 033901 (2009).
    [CrossRef]
  11. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
    [CrossRef]
  12. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
    [CrossRef]
  13. N. S. Sariciftci, and A. J. Heeger, “Handbook of Organic Conductive Molecules and Polymers,” JOHN WILEY & SONS, New York (1997).
  14. H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
    [CrossRef] [PubMed]
  15. T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
    [CrossRef]
  16. C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
    [CrossRef] [PubMed]
  17. T. B. Jones, Electromechanics of particles, (Cambridge University Press, New York, 1995).
  18. H. A. Pohl, Dielectrophoresis, (Cambridge University, Cambridge, UK, 1978).
  19. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
    [CrossRef]
  20. G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
    [CrossRef]
  21. V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys., A Mater. Sci. Process. 79(1), 21–25 (2004).
    [CrossRef]
  22. C. Y. Li, T. C. Wen, and T. F. Guo, “Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells,” J. Mater. Chem. 18(37), 4478–4482 (2008).
    [CrossRef]
  23. J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
    [CrossRef] [PubMed]
  24. D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004).
    [CrossRef]
  25. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [CrossRef]
  26. W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. In press., doi:.
  27. T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980).
    [CrossRef]

2009

Y. H. Lin and G. B. Lee, “An optically-induced cell lysis device using dielectrophoresis,” Appl. Phys. Lett. 94(3), 033901 (2009).
[CrossRef]

Y. H. Lin, C. M. Chang, and G. B. Lee, “Manipulation single DNA molecule by using optically-induced dielectrophoresis,” Opt. Express 17, 15318–15329 (2009).
[CrossRef] [PubMed]

2008

C. Y. Li, T. C. Wen, and T. F. Guo, “Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells,” J. Mater. Chem. 18(37), 4478–4482 (2008).
[CrossRef]

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[CrossRef] [PubMed]

2007

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

2006

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
[CrossRef] [PubMed]

2005

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

2004

V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys., A Mater. Sci. Process. 79(1), 21–25 (2004).
[CrossRef]

D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004).
[CrossRef]

2003

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

2002

M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
[CrossRef] [PubMed]

2000

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

1999

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

1998

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

1997

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

1994

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

1992

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

1980

T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980).
[CrossRef]

Abeles, B.

T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980).
[CrossRef]

Becker, F. F.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Bhardwaj, U.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Billeter, J. L.

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

Bradley, D. D. C.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

Brown, T. M.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Cacialli, F.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Cebulka, J. M.

T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980).
[CrossRef]

Chang, C. M.

Chen, C. Y.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Chin, X. G.

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Chiou, P. Y.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Chirvase, D.

D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004).
[CrossRef]

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Choulis, S. A.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

Cook, S.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

Daik, R.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Durrant, J. R.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

Dyakonov, V.

V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys., A Mater. Sci. Process. 79(1), 21–25 (2004).
[CrossRef]

D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004).
[CrossRef]

Emery, K.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Feast, W. J.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Friend, R. H.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

Fuqu, Y.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Gascoyne, P. R. C.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Guo, T. F.

C. Y. Li, T. C. Wen, and T. F. Guo, “Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells,” J. Mater. Chem. 18(37), 4478–4482 (2008).
[CrossRef]

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Han, T. H.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Heywang, G.

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

Hsiung, S. K.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Huang, J. S.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Huang, Y.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Hughes, M. P.

M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
[CrossRef] [PubMed]

Hummelen, J. C.

D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004).
[CrossRef]

Jamshidi, A.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Jonas, F.

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

Kim, J. S.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Kim, Y.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

Lee, G. B.

Y. H. Lin and G. B. Lee, “An optically-induced cell lysis device using dielectrophoresis,” Appl. Phys. Lett. 94(3), 033901 (2009).
[CrossRef]

Y. H. Lin, C. M. Chang, and G. B. Lee, “Manipulation single DNA molecule by using optically-induced dielectrophoresis,” Opt. Express 17, 15318–15329 (2009).
[CrossRef] [PubMed]

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[CrossRef] [PubMed]

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. In press., doi:.

Li, C. Y.

C. Y. Li, T. C. Wen, and T. F. Guo, “Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells,” J. Mater. Chem. 18(37), 4478–4482 (2008).
[CrossRef]

Li, G.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Liao, J. C.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Lin, W. Y.

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. In press., doi:.

Lin, Y. H.

Y. H. Lin, C. M. Chang, and G. B. Lee, “Manipulation single DNA molecule by using optically-induced dielectrophoresis,” Opt. Express 17, 15318–15329 (2009).
[CrossRef] [PubMed]

Y. H. Lin and G. B. Lee, “An optically-induced cell lysis device using dielectrophoresis,” Appl. Phys. Lett. 94(3), 033901 (2009).
[CrossRef]

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[CrossRef] [PubMed]

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. In press., doi:.

Liou, S. H.

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Markx, G. H.

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

McCabe, E. R. B.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Moriarty, T.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Nelson, J.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

Ohta, A. T.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Padinger, F.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Pakhomov, G. L.

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Parisi, J.

D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004).
[CrossRef]

Pauzauskie, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Pelcovits, R. A.

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

Pethig, R.

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Ren, S.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Rittberger, R. S.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Sariciftci, N. S.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Schuck, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Shrotriya, V.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Sirringhaus, H.

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

Tai, C. H.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Tessler, N.

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

Tiedje, T.

T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980).
[CrossRef]

Tsai, M. L.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Voldman, J.

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
[CrossRef] [PubMed]

Wang, X. B.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Wen, T. C.

C. Y. Li, T. C. Wen, and T. F. Guo, “Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells,” J. Mater. Chem. 18(37), 4478–4482 (2008).
[CrossRef]

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Wronski, C. R.

T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980).
[CrossRef]

Wu, M. C.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Yang, C. H.

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Yang, P.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Yang, Y.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yao, Y.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yeh, P. H.

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Adv. Funct. Mater.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Adv. Mater.

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

Annu. Rev. Biomed. Eng.

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005).
[CrossRef]

Y. H. Lin and G. B. Lee, “An optically-induced cell lysis device using dielectrophoresis,” Appl. Phys. Lett. 94(3), 033901 (2009).
[CrossRef]

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys., A Mater. Sci. Process. 79(1), 21–25 (2004).
[CrossRef]

Biomed. Microdevices

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Biosens. Bioelectron.

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[CrossRef] [PubMed]

Electrophoresis

M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
[CrossRef] [PubMed]

J. Mater. Chem.

C. Y. Li, T. C. Wen, and T. F. Guo, “Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells,” J. Mater. Chem. 18(37), 4478–4482 (2008).
[CrossRef]

J. Microelectromech. Syst.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

J. Phys. D Appl. Phys.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Microfluid. Nanofluid.

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. In press., doi:.

Nanotechnology

D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004).
[CrossRef]

Nat. Mater.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Nat. Photonics

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Nature

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

Science

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

Solar Cells

T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980).
[CrossRef]

Thin Solid Films

T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Trends Biotechnol.

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Other

N. S. Sariciftci, and A. J. Heeger, “Handbook of Organic Conductive Molecules and Polymers,” JOHN WILEY & SONS, New York (1997).

T. B. Jones, Electromechanics of particles, (Cambridge University Press, New York, 1995).

H. A. Pohl, Dielectrophoresis, (Cambridge University, Cambridge, UK, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A schematic illustration of the polymer-based ODEP device and the experimental setup; (b) The mechanism for the generation of photo-excited charge carriers through an electron-transfer process of excitons at the P3HT/PCBM interface.

Fig. 2
Fig. 2

The maximum drag velocity and the induced DEP force for different thicknesses of light-activated layers. The P3HT-only (△) and P3HT:PCBM (□) films are tested.

Fig. 3
Fig. 3

The UV-Vis absorption spectra of P3HT:PCBM films prepared from solutions with concentrations ranging from 1 to 6 wt% at a spin speed of 600 rpm.

Fig. 4
Fig. 4

The maximum drag velocity and the induced DEP force for light-activated layers with different thicknesses prepared from 3wt% (△), 4wt% (□), 5wt% (○) P3HT:PCBM with 1,2-dichlorobenzene solution.

Fig. 5
Fig. 5

The maximum drag velocity and the induced DEP force during continuous operation for BHJ ODEP device made of the light-activated layers prepared by 5wt%_with LiF (□), 4wt%_with LiF (△) and 4wt%_without LiF (○).

Fig. 6
Fig. 6

Images taken under an optical microscope during manipulation of the 20.0 μm diameter polystyrene beads (a) randomly distribute on the substrate (b) concentrate at the upper left side of the substrate (c)~(f) carry around the four corners of the substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F=2πr3εmRe[K*(ω)](E2)

Metrics