Abstract

Cavity dumping of an all-fiber laser system is demonstrated. The active element is a pulse-picker with nanosecond rise time consisting of a microstructured fiber with electrically driven internal electrodes. The device is used for intracavity polarization rotation and dumping through a polarization splitter. The optical flux is removed from the cavity within one roundtrip and most of the amplified spontaneous emission, spiking and relaxation oscillation that follow during the gain recovery phase of the laser are blocked from the output signal.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Vuylsteke, “Theory of Laser Regeneration Switching,” J. Appl. Phys. 34(6), 1615–1622 (1963), http://dx.doi.org/10.1063/1.1702644 .
    [CrossRef]
  2. F. Keilmann and E. Koteles, “Cavity-dumping a mode-locked TEA CO 2 laser,” Opt. Quantum Electron. 12(4), 347–349 (1980), http://dx.doi.org/10.1007/BF00620290 .
    [CrossRef]
  3. V. Sundström and T. Gillbro, “Pulse properties of a synchronously mode-locked, cavity dumped, picosecond dye laser system,” Appl. Phys., A Mater. Sci. Process. 24, 233–238 (1981), http://dx.doi.org/10.1007/BF00899763 .
  4. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A12O3laser,” Opt. Lett. 18(21), 1822–1824 (1993), http://ol.osa.org/abstract.cfm?URI=ol-18-21-1822 .
    [CrossRef] [PubMed]
  5. A. Killi, J. Dörring, U. Morgner, M. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13(6), 1916–1922 (2005), http://dx.doi.org/10.1364/OPEX.13.001916 .
    [CrossRef] [PubMed]
  6. A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, “Generation of few-cycle pulses directly from a MHz-NOPA,” Opt. Express 14(22), 10627–10630 (2006), http://dx.doi.org/10.1364/OE.14.010627 .
    [CrossRef] [PubMed]
  7. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-7-3962 .
    [CrossRef] [PubMed]
  8. J. Schäfer, J. P. Mondia, R. Sharma, and Z. H. Lu, “Quantum Dot Microdrop Laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuJJ6 http://www.opticsinfobase.org/abstract.cfm?URI=URI=CLEO-2008-CTuJJ6
  9. I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 .
    [CrossRef]
  10. C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
    [CrossRef]
  11. F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6177 .
    [CrossRef] [PubMed]
  12. C. J. S. de Matos and W. Margulis, “Optical fibre modulator based on electrostatic attraction,” Opt. Commun. 190(1-6), 135–139 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01036-7 .
    [CrossRef]
  13. M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-26-22064 .
    [CrossRef] [PubMed]
  14. A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32(9), 2031–2035 (1993), http://link.aip.org/link/?JOE/32/2031/1 .
    [CrossRef]
  15. Y. Kaneda, Y. Hu, C. Spiegelberg, J. Geng, and S. Jiang, “Single-frequency, all-fiber Q-switched laser at 1550 nm,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 126 http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2004-126
  16. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14(3), 1106–1112 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-14-3-1106 .
    [CrossRef] [PubMed]
  17. F. Luo and T. Yeh, “LPFG modulator for fiber laser Q switching,” Proc. SPIE 7195, 719522 (2009), http://link.aip.org/link/?PSI/7195/719522/1 .
    [CrossRef]
  18. Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34(7), 1024–1026 (2009), http://ol.osa.org/abstract.cfm?URI=ol-34-7-1024 .
    [CrossRef] [PubMed]
  19. H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007), http://ol.osa.org/abstract.cfm?URI=ol-32-6-614 .
    [CrossRef] [PubMed]
  20. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P. Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14948 .
    [CrossRef] [PubMed]
  21. Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997), http://dx.doi.org/10.1103/PhysRevA.55.2376 .
    [CrossRef]
  22. E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 .
    [CrossRef]
  23. H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 .
    [CrossRef]
  24. E. L. Buckland and R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21(15), 1117–1119 (1996), http://ol.osa.org/abstract.cfm?URI=ol-21-15-1117 .
    [CrossRef] [PubMed]
  25. P. J. Hardman, P. D. Townsend, A. J. Poustie, and K. J. Blow, “Experimental investigation of resonant enhancement of the acoustic interaction of optical pulses in an optical fiber,” Opt. Lett. 21(6), 393–395 (1996), http://ol.osa.org/abstract.cfm?URI=ol-21-6-393 .
    [CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (4)

2006 (2)

2005 (1)

2001 (1)

C. J. S. de Matos and W. Margulis, “Optical fibre modulator based on electrostatic attraction,” Opt. Commun. 190(1-6), 135–139 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01036-7 .
[CrossRef]

1999 (3)

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
[CrossRef]

E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 .
[CrossRef]

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 .
[CrossRef]

1997 (1)

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997), http://dx.doi.org/10.1103/PhysRevA.55.2376 .
[CrossRef]

1996 (2)

1994 (1)

I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 .
[CrossRef]

1993 (2)

M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A12O3laser,” Opt. Lett. 18(21), 1822–1824 (1993), http://ol.osa.org/abstract.cfm?URI=ol-18-21-1822 .
[CrossRef] [PubMed]

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32(9), 2031–2035 (1993), http://link.aip.org/link/?JOE/32/2031/1 .
[CrossRef]

1981 (1)

V. Sundström and T. Gillbro, “Pulse properties of a synchronously mode-locked, cavity dumped, picosecond dye laser system,” Appl. Phys., A Mater. Sci. Process. 24, 233–238 (1981), http://dx.doi.org/10.1007/BF00899763 .

1980 (1)

F. Keilmann and E. Koteles, “Cavity-dumping a mode-locked TEA CO 2 laser,” Opt. Quantum Electron. 12(4), 347–349 (1980), http://dx.doi.org/10.1007/BF00620290 .
[CrossRef]

1963 (1)

A. A. Vuylsteke, “Theory of Laser Regeneration Switching,” J. Appl. Phys. 34(6), 1615–1622 (1963), http://dx.doi.org/10.1063/1.1702644 .
[CrossRef]

Abarbanel, H. D. I.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 .
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 .
[CrossRef]

Andres, M.

Bammer, F.

Binhammer, T.

Blondy, P.

Blow, K. J.

Bouyge, D.

Boyd, R. W.

Buckland, E. L.

Buhl, M.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 .
[CrossRef]

Chandonnet, A.

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32(9), 2031–2035 (1993), http://link.aip.org/link/?JOE/32/2031/1 .
[CrossRef]

Crunteanu, A.

de Matos, C. J. S.

C. J. S. de Matos and W. Margulis, “Optical fibre modulator based on electrostatic attraction,” Opt. Commun. 190(1-6), 135–139 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01036-7 .
[CrossRef]

Delgado-Pinar, M.

Desfarges-Berthelemot, A.

Diez, A.

Dörring, J.

Fabert, M.

Fonjallaz, P. Y.

Frei, J.

Fujimoto, J. G.

García-Ojalvo, J.

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997), http://dx.doi.org/10.1103/PhysRevA.55.2376 .
[CrossRef]

Gillbro, T.

V. Sundström and T. Gillbro, “Pulse properties of a synchronously mode-locked, cavity dumped, picosecond dye laser system,” Appl. Phys., A Mater. Sci. Process. 24, 233–238 (1981), http://dx.doi.org/10.1007/BF00899763 .

Grudinin, A. B.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
[CrossRef]

Hardman, P. J.

Jedrzejewski, K. P.

I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 .
[CrossRef]

Keilmann, F.

F. Keilmann and E. Koteles, “Cavity-dumping a mode-locked TEA CO 2 laser,” Opt. Quantum Electron. 12(4), 347–349 (1980), http://dx.doi.org/10.1007/BF00620290 .
[CrossRef]

Kennel, M. B.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 .
[CrossRef]

Kermène, V.

Killi, A.

Knape, H.

Koch, R.

Kopf, D.

Koteles, E.

F. Keilmann and E. Koteles, “Cavity-dumping a mode-locked TEA CO 2 laser,” Opt. Quantum Electron. 12(4), 347–349 (1980), http://dx.doi.org/10.1007/BF00620290 .
[CrossRef]

Larose, G.

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32(9), 2031–2035 (1993), http://link.aip.org/link/?JOE/32/2031/1 .
[CrossRef]

Lederer, M.

Lewis, C. T.

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 .
[CrossRef]

Luo, F.

F. Luo and T. Yeh, “LPFG modulator for fiber laser Q switching,” Proc. SPIE 7195, 719522 (2009), http://link.aip.org/link/?PSI/7195/719522/1 .
[CrossRef]

Margulis, W.

Morgner, U.

Nilsson, J.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
[CrossRef]

Palmer, G.

Pannell, C. N.

I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 .
[CrossRef]

Paye, J.

Perez-Millan, P.

Pessina, E. M.

E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 .
[CrossRef]

Petkovsek, R.

Poustie, A. J.

Ramaswamy, M.

Redondo, J.

E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 .
[CrossRef]

Renaud, C. C.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
[CrossRef]

Roldán, E.

E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 .
[CrossRef]

Roy, R.

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997), http://dx.doi.org/10.1103/PhysRevA.55.2376 .
[CrossRef]

Samuel, I. D. W.

Selvas-Aguilar, R. J.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
[CrossRef]

Steinmann, A.

Sundström, V.

V. Sundström and T. Gillbro, “Pulse properties of a synchronously mode-locked, cavity dumped, picosecond dye laser system,” Appl. Phys., A Mater. Sci. Process. 24, 233–238 (1981), http://dx.doi.org/10.1007/BF00899763 .

Tarasenko, O.

Taylor, E. R.

I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 .
[CrossRef]

Town, G. E.

Townsend, P. D.

Turnbull, G. A.

Turner, P. W.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
[CrossRef]

Ulman, M.

Valcárcel, G. J.

E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 .
[CrossRef]

Vasdekis, A. E.

Vuylsteke, A. A.

A. A. Vuylsteke, “Theory of Laser Regeneration Switching,” J. Appl. Phys. 34(6), 1615–1622 (1963), http://dx.doi.org/10.1063/1.1702644 .
[CrossRef]

Williams, Q. L.

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997), http://dx.doi.org/10.1103/PhysRevA.55.2376 .
[CrossRef]

Yeh, T.

F. Luo and T. Yeh, “LPFG modulator for fiber laser Q switching,” Proc. SPIE 7195, 719522 (2009), http://link.aip.org/link/?PSI/7195/719522/1 .
[CrossRef]

Yu, Z.

Zalvidea, D.

Appl. Phys., A Mater. Sci. Process. (1)

V. Sundström and T. Gillbro, “Pulse properties of a synchronously mode-locked, cavity dumped, picosecond dye laser system,” Appl. Phys., A Mater. Sci. Process. 24, 233–238 (1981), http://dx.doi.org/10.1007/BF00899763 .

IEEE Photon. Technol. Lett. (1)

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 .
[CrossRef]

J. Appl. Phys. (1)

A. A. Vuylsteke, “Theory of Laser Regeneration Switching,” J. Appl. Phys. 34(6), 1615–1622 (1963), http://dx.doi.org/10.1063/1.1702644 .
[CrossRef]

Opt. Commun. (1)

C. J. S. de Matos and W. Margulis, “Optical fibre modulator based on electrostatic attraction,” Opt. Commun. 190(1-6), 135–139 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01036-7 .
[CrossRef]

Opt. Eng. (1)

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32(9), 2031–2035 (1993), http://link.aip.org/link/?JOE/32/2031/1 .
[CrossRef]

Opt. Express (7)

M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14(3), 1106–1112 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-14-3-1106 .
[CrossRef] [PubMed]

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-26-22064 .
[CrossRef] [PubMed]

F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6177 .
[CrossRef] [PubMed]

A. Killi, J. Dörring, U. Morgner, M. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13(6), 1916–1922 (2005), http://dx.doi.org/10.1364/OPEX.13.001916 .
[CrossRef] [PubMed]

A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, “Generation of few-cycle pulses directly from a MHz-NOPA,” Opt. Express 14(22), 10627–10630 (2006), http://dx.doi.org/10.1364/OE.14.010627 .
[CrossRef] [PubMed]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-7-3962 .
[CrossRef] [PubMed]

Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P. Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14948 .
[CrossRef] [PubMed]

Opt. Lett. (5)

Opt. Quantum Electron. (2)

F. Keilmann and E. Koteles, “Cavity-dumping a mode-locked TEA CO 2 laser,” Opt. Quantum Electron. 12(4), 347–349 (1980), http://dx.doi.org/10.1007/BF00620290 .
[CrossRef]

I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 .
[CrossRef]

Phys. Rev. A (3)

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997), http://dx.doi.org/10.1103/PhysRevA.55.2376 .
[CrossRef]

E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 .
[CrossRef]

H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 .
[CrossRef]

Proc. SPIE (1)

F. Luo and T. Yeh, “LPFG modulator for fiber laser Q switching,” Proc. SPIE 7195, 719522 (2009), http://link.aip.org/link/?PSI/7195/719522/1 .
[CrossRef]

Other (2)

Y. Kaneda, Y. Hu, C. Spiegelberg, J. Geng, and S. Jiang, “Single-frequency, all-fiber Q-switched laser at 1550 nm,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 126 http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2004-126

J. Schäfer, J. P. Mondia, R. Sharma, and Z. H. Lu, “Quantum Dot Microdrop Laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuJJ6 http://www.opticsinfobase.org/abstract.cfm?URI=URI=CLEO-2008-CTuJJ6

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM picture of the cross section of the four-hole fiber used here.

Fig. 2
Fig. 2

Setup for all-fiber cavity dumping.

Fig. 3
Fig. 3

(a) Electrical pulses applied to the pulse-picker causing it to switch ON and OFF and (b) the output optical pulse.

Fig. 4
Fig. 4

(a) Averaged trace of optical output when cavity dumping at time t~0. (b) Corresponding intracavity signal showing the cavity being emptied at time t~0 and the laser action recovery with spiking and relaxation oscillations.

Fig. 5
Fig. 5

(a) Average pulse energy and peak power of cavity dumped laser at 40 Hz. The inset shows the pulse shape. b) Output over time for two different cavity lengths.

Fig. 6
Fig. 6

Rapid oscillations (2.6 ns period) observed in a single cavity dumped pulse.

Metrics