Abstract

In this paper, we theoretically analyze the emission of guided polaritons accompanying spontaneous recombination in a semiconductor quantum dot coupled to metallic nanowire. This study is aimed to shed light on the interaction between optically excited quantum emitters and metallic nanowaveguides beyond the validity of dipole approximation. To the best of our knowledge, this is the first time the geometry of quantum emitter and spatial inhomogeneity of the electric field constituting the fundamental polariton mode are fully taken into account. Even though we performed the analysis for disk-like quantum dot, all the conclusions are quite general and remain valid for any emitter with nanometer dimensions. Particularly, we found that the strong inhomogeneity of the electric field near the nanowire surface results in a variety of dipole-forbidden transitions in the quantum dot energy spectra. It was also unambiguously shown that there is a certain nanowire radius that gives maximum emission efficiency into the fundamental polariton mode. Since the dipole approximation breaks for nanowires with small radii and relatively big nanoemitters, the above features need to be considered in the engineering of plasmonic devices for nanophotonic networks.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Abdeldayem, D. O. Frazier, W. K. Witherow, C. E. Banks, B. G. Penn, and M. S. Paley, "Recent advances in photonic devices for optical super computing," in Lecture Notes in Computer Science5172, S. Dolev, T. Haist, and M. Oltean, eds. (Springer-Verlag, 2008), pp. 9-32.
  2. H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
    [PubMed]
  3. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).
  4. S. A. Maier, "Plasmonics - towards subwavelength optical devices," Current Nanoscie. 1, 17-23 (2005).
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003).
    [PubMed]
  6. T. Thio, K. M. Pellerin and R. A. Linke, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
  7. J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys. 73, 565-581 (2001).
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
  9. H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
    [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  11. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [PubMed]
  12. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
  13. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
    [PubMed]
  14. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
    [PubMed]
  15. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1998).
  16. S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).
  17. I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
    [PubMed]
  18. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
  19. C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).
  20. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
  21. S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).
  22. P. J. Pauzauskie and P. Yang, "Nanowire Photonics," Mater. Today 9, 36-45 (2006).
  23. M. Orrit, "Quantum light switch," Nature Phys. 3, 755-756 (2007).
  24. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
    [PubMed]
  25. Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).
  26. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
    [PubMed]
  27. G. Y. Chen, Y. N. Chen, and D. S. Chuu, "Spontaneous emission of a quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008).
    [PubMed]
  28. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
  29. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946).
  30. D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).
  31. Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
    [PubMed]
  32. M. Born and E. Wolf, Principles of Optics (Pergamon, 1986).
  33. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1962).
  34. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  35. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).
  36. A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).
  37. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 8; Electrodynamics of Continuous Media (Elsevier, 2004).
  38. T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119 (2006).
  39. T. Laroche, A. Vial, and M. Roussey, "Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 91, 123101 (2007).
  40. N. Mori and T. Ando, "Electronoptical-phonon interaction in single and double heterostructures," Phys. Rev. B 40, 6175-6188 (1989).
  41. W. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater. 19, 3771-3782 (2007).
  42. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1964).
  43. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3; Quantum Mechanics: Non-relativistic Theory (Elsevier, 2003).
  44. I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).
  45. S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

2009

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).

2008

I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).

G. Y. Chen, Y. N. Chen, and D. S. Chuu, "Spontaneous emission of a quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008).
[PubMed]

2007

W. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater. 19, 3771-3782 (2007).

T. Laroche, A. Vial, and M. Roussey, "Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 91, 123101 (2007).

H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
[PubMed]

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).

M. Orrit, "Quantum light switch," Nature Phys. 3, 755-756 (2007).

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

2006

S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).

P. J. Pauzauskie and P. Yang, "Nanowire Photonics," Mater. Today 9, 36-45 (2006).

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[PubMed]

S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).

T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119 (2006).

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[PubMed]

2005

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).

S. A. Maier, "Plasmonics - towards subwavelength optical devices," Current Nanoscie. 1, 17-23 (2005).

I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[PubMed]

2004

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

2003

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003).
[PubMed]

A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).

2002

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

2001

J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys. 73, 565-581 (2001).

T. Thio, K. M. Pellerin and R. A. Linke, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).

1999

S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

1998

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

1997

C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).

1992

H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
[PubMed]

1991

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[PubMed]

1989

N. Mori and T. Ando, "Electronoptical-phonon interaction in single and double heterostructures," Phys. Rev. B 40, 6175-6188 (1989).

1981

D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).

1946

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946).

Agraït, N.

C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

Ando, T.

N. Mori and T. Ando, "Electronoptical-phonon interaction in single and double heterostructures," Phys. Rev. B 40, 6175-6188 (1989).

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Atwater, H. A.

H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
[PubMed]

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Baranov, A. V.

I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).

A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).

Barnes, W. L.

W. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater. 19, 3771-3782 (2007).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003).
[PubMed]

Barnett, S. M.

S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

Berwick, K.

I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).

Bj¨ork, G.

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[PubMed]

Blais, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Brandes, T.

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys. 73, 565-581 (2001).

Chang, D. E.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[PubMed]

Chen, G. Y.

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).

G. Y. Chen, Y. N. Chen, and D. S. Chuu, "Spontaneous emission of a quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008).
[PubMed]

Chen, Y. N.

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).

G. Y. Chen, Y. N. Chen, and D. S. Chuu, "Spontaneous emission of a quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008).
[PubMed]

Chuu, D. S.

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).

G. Y. Chen, Y. N. Chen, and D. S. Chuu, "Spontaneous emission of a quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008).
[PubMed]

Davis, C. C.

I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[PubMed]

Demler, E. A.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003).
[PubMed]

Ditlbacher, H.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

Elliott, J.

I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[PubMed]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Fedorov, A. V.

I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).

A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

Girard, C.

T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119 (2006).

Girvin, S. M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys. 73, 565-581 (2001).

Hemmer, P. R.

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Huang, R. S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Kleppner, D.

D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).

Knöll, L.

S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

Kobayashi, T.

Krenn, J. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

Kumar, S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

Laroche, T.

T. Laroche, A. Vial, and M. Roussey, "Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 91, 123101 (2007).

T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119 (2006).

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

Linke, R. A.

Lukin, M. D.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[PubMed]

Machida, S.

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[PubMed]

Maier, S. A.

S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).

S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).

S. A. Maier, "Plasmonics - towards subwavelength optical devices," Current Nanoscie. 1, 17-23 (2005).

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Masumoto, Y.

A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).

Mori, N.

N. Mori and T. Ando, "Electronoptical-phonon interaction in single and double heterostructures," Phys. Rev. B 40, 6175-6188 (1989).

Morimoto, A.

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

Murray, W.

W. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater. 19, 3771-3782 (2007).

Orrit, M.

M. Orrit, "Quantum light switch," Nature Phys. 3, 755-756 (2007).

Ozbay, E.

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

Pauzauskie, P. J.

P. J. Pauzauskie and P. Yang, "Nanowire Photonics," Mater. Today 9, 36-45 (2006).

Pellerin, K. M.

Perova, T. S.

I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946).

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys. 73, 565-581 (2001).

Roussey, M.

T. Laroche, A. Vial, and M. Roussey, "Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 91, 123101 (2007).

Rubio, G.

C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).

Rukhlenko, I. D.

I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).

A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

Scheel, S.

S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

Schoelkopf, R. J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Schuster, D. I.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[PubMed]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).

Sorensen, A. S.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[PubMed]

Takahara, J.

Taki, H.

Thio, T.

T. Thio, K. M. Pellerin and R. A. Linke, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

Untiedt, C.

C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).

Vial, A.

T. Laroche, A. Vial, and M. Roussey, "Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 91, 123101 (2007).

Vieira, S.

C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).

Wallraff, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

Welsch, D.-G.

S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

Yamagishi, S.

Yamamoto, Y.

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[PubMed]

Yang, P.

P. J. Pauzauskie and P. Yang, "Nanowire Photonics," Mater. Today 9, 36-45 (2006).

Yokoyama, H.

H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
[PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

Zayats, A.

I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[PubMed]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

Adv. Mater.

W. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater. 19, 3771-3782 (2007).

Appl. Phys. Lett.

T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119 (2006).

T. Laroche, A. Vial, and M. Roussey, "Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 91, 123101 (2007).

Current Nanoscie.

S. A. Maier, "Plasmonics - towards subwavelength optical devices," Current Nanoscie. 1, 17-23 (2005).

Europhys. Lett.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

IEEE J. Sel. Top. Quantum Electron.

S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).

S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).

J. Appl. Phys.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).

J. Opt. A: Pure Appl. Opt.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).

Mater. Today

P. J. Pauzauskie and P. Yang, "Nanowire Photonics," Mater. Today 9, 36-45 (2006).

Nature

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[PubMed]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003).
[PubMed]

Nature Phys.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).

M. Orrit, "Quantum light switch," Nature Phys. 3, 755-756 (2007).

Opt. Lett.

Phys. Rev.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946).

Phys. Rev. A

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[PubMed]

S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).

Phys. Rev. B

C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).

N. Mori and T. Ando, "Electronoptical-phonon interaction in single and double heterostructures," Phys. Rev. B 40, 6175-6188 (1989).

A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).

A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).

I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).

Phys. Rev. Lett.

D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006).
[PubMed]

I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[PubMed]

Rev. Mod. Phys.

J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys. 73, 565-581 (2001).

Sci. Am.

H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
[PubMed]

Science

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[PubMed]

H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
[PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1986).

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1962).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 8; Electrodynamics of Continuous Media (Elsevier, 2004).

H. Abdeldayem, D. O. Frazier, W. K. Witherow, C. E. Banks, B. G. Penn, and M. S. Paley, "Recent advances in photonic devices for optical super computing," in Lecture Notes in Computer Science5172, S. Dolev, T. Haist, and M. Oltean, eds. (Springer-Verlag, 2008), pp. 9-32.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1964).

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3; Quantum Mechanics: Non-relativistic Theory (Elsevier, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The metallic nanowire and semiconductor quantum dot considered in the paper: (a) general view; (b) xy-plane projection. The permittivities of nanowire, surrounding media, and quantum dot are ε 1, ε 2, and ε 3, respectively; R and L are the radius and length of nanowire; a and h are the radius and height of quantum dot; d is the distance between the symmetry axes of quantum dot and nanowire.

Fig. 2.
Fig. 2.

The dispersion of fundamental polariton mode for different radii, R of silver nanowire embedded in SiO2. The horizontal line with circle markers shows the saturation frequency ω(∞)≈0.91ωp . In the calculations, we used the following parameters: ωp =3.76 eV, ε∞=9.6, ε 2=2.1.

Fig. 3.
Fig. 3.

The efficiency of guided polariton emission as a function of distance, d between the quantum dot and nanowire for dipole-allowed transitions with quantum numbers {n, l,m}={n′, l′,m′}. In the upper panel, n=1, l=0, m=1; in the lower panel, R=10 nm; in both panels, h=2a=20 nm. For other parameters see the text.

Fig. 4.
Fig. 4.

The efficiency of guided polariton emission as a function of nanowire radius, R for dipole-allowed (upper panel) and dipole-forbidden (lower panel) transitions. The inset shows small-scale variation of the emission efficiency. In the calculations, it was assumed that the quantum dot with h=2a=20 nm touches the nanowire such that d(R)=R+a. The other parameters are the same as in Fig. 3.

Fig. 5.
Fig. 5.

The dependance of polariton emission efficiency on the quantum dot height, h (radius, a) for dipole-allowed transitions. The quantum dot volume was fixed with a 2 h=250 nm3; d=15 nm, R=5 nm. The other parameters are the same as in Fig. 4.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E(r,t)=m=Em(ρ)exp[i(kzωt+mϕ)]+c.c.,
E0(ρ)=E0×{η[I1(α1ρ)eρi(α1k)I0(α1ρ)ez],ρRK1(α2ρ)eρi(α2k)K0(α2ρ)ez,ρR
14πd(ωε)dωE0(ρ)2dV=h̅ ω ,
E0=(2h̅ωσL)12 ,
η(ω)=α2α1 K0(α2R)I0(α1R) .
wif=2πh̅2 f kVif(k)2 δ [Ωifω(k)] ,
wif=Lh̅2 fVif(k0)2ω(k0)1 ,
Vif(k)2=2(ePε3h̅ω)2j=x,y,z𝓔if(j)(k)2 .
𝓔if(j)(k)= ψf* (r) Ej (r) ψi (r) d V .
ψν(r)=(2πa2h)12 Jl(γnlρa)Jl+1(γnl) sin (πmzh) exp (ilφ) ,
wif=wred 3χ(l)c32σΩif2ε352 Δmm(k0h)ω(k0) j=x,y,zGnlnl(j)(k0)2 ,

Metrics