Abstract

Laguerre-Gaussian (LG) beams have been extensively studied due to their unique structure, characterized by a phase singularity at the center of the beam. Common methods for generating such beams include the use of diffractive optical elements and spatial light modulators, which although offering excellent versatility, suffers from several drawbacks, including in many cases a low power damage threshold as well as complexity and expense. This paper presents a simple, low cost method for the generation of high-fidelity LG beams using rapid prototyping techniques. Our approach is based on a fluidic-hologram concept, whereby the properties of the LG beam can be finely controlled by varying the refractive-index of the fluid that flows through the hologram. This simple approach, while optimized here for LG beam generation, is also expected to find applications in the production of tunable fluidic optical trains.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
    [CrossRef] [PubMed]
  3. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
    [CrossRef] [PubMed]
  4. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
    [CrossRef] [PubMed]
  5. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
    [CrossRef] [PubMed]
  6. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
    [CrossRef]
  7. P. A. Prentice, M. P. MacDonald, T. G. Frank, A. Cuschier, G. C. Spalding, W. Sibbett, P. A. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12(4), 593–600 (2004).
    [CrossRef] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [CrossRef] [PubMed]
  9. R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
    [CrossRef]
  10. G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew. Chem. Int. Ed. 46(8), 1326–1328 (2007).
    [CrossRef]
  11. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
    [CrossRef]
  12. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
    [CrossRef]
  13. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000).
    [CrossRef]
  14. G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007).
    [CrossRef] [PubMed]
  15. G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
    [CrossRef] [PubMed]
  16. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Progress in Optics 39, 291–372 (1999).
    [CrossRef]
  17. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
    [CrossRef]
  18. G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
    [CrossRef]
  19. S. S. R. Oemrawsingh, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices,” J. Opt. Soc. Am. A 21(11), 2089–2096 (2004).
    [CrossRef]
  20. I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
    [CrossRef]
  21. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
    [CrossRef]
  22. J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008).
    [CrossRef] [PubMed]
  23. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901–133904 (2003).
    [CrossRef] [PubMed]
  24. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [CrossRef]
  25. W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
    [CrossRef]
  26. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
    [CrossRef]
  27. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  28. Philips, “Fluid Focus”, retrieved http://www.research.philips.com/technologies/projects/fluidfocus.html .
  29. G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
    [CrossRef]
  30. G. S. Fiorini and D. T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” Biotechniques 38(3), 429–446 (2005).
    [CrossRef] [PubMed]
  31. J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
    [CrossRef] [PubMed]
  32. O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
    [CrossRef]
  33. R. A. Instruments, “Sucrose solution Brix values versus refractive index,” (2008).
  34. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
    [CrossRef]
  35. M. Golic, K. Walsh, and P. Lawson, “Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature,” Appl. Spectrosc. 57(2), 139–145 (2003).
    [CrossRef] [PubMed]

2009 (1)

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (5)

G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007).
[CrossRef] [PubMed]

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew. Chem. Int. Ed. 46(8), 1326–1328 (2007).
[CrossRef]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
[CrossRef] [PubMed]

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

2005 (2)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

G. S. Fiorini and D. T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” Biotechniques 38(3), 429–446 (2005).
[CrossRef] [PubMed]

2004 (8)

P. A. Prentice, M. P. MacDonald, T. G. Frank, A. Cuschier, G. C. Spalding, W. Sibbett, P. A. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12(4), 593–600 (2004).
[CrossRef] [PubMed]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
[CrossRef] [PubMed]

S. S. R. Oemrawsingh, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices,” J. Opt. Soc. Am. A 21(11), 2089–2096 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[CrossRef]

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
[CrossRef]

I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
[CrossRef]

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

2003 (3)

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901–133904 (2003).
[CrossRef] [PubMed]

G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
[CrossRef]

M. Golic, K. Walsh, and P. Lawson, “Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature,” Appl. Spectrosc. 57(2), 139–145 (2003).
[CrossRef] [PubMed]

2002 (2)

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

2001 (1)

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

2000 (1)

1999 (2)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Progress in Optics 39, 291–372 (1999).
[CrossRef]

1998 (2)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

1996 (1)

1993 (1)

G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Abraham, E. R. I.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
[CrossRef]

Allen, L.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Progress in Optics 39, 291–372 (1999).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Allen, P. B.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

Arlt, J.

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000).
[CrossRef]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Progress in Optics 39, 291–372 (1999).
[CrossRef]

Barnett, S. M.

Basistiy, I. V.

I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Berry, M. V.

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
[CrossRef]

Brittain, S. T.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
[CrossRef]

Campbell, P. A.

Chiu, D. T.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew. Chem. Int. Ed. 46(8), 1326–1328 (2007).
[CrossRef]

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

G. S. Fiorini and D. T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” Biotechniques 38(3), 429–446 (2005).
[CrossRef] [PubMed]

G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
[CrossRef]

Clifford, M. A.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

Cooper, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Courtial, J.

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901–133904 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Cuschier, A.

Dholakia, K.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

P. A. Prentice, M. P. MacDonald, T. G. Frank, A. Cuschier, G. C. Spalding, W. Sibbett, P. A. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12(4), 593–600 (2004).
[CrossRef] [PubMed]

W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

di Leonardo, R.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Duffy, D. C.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
[CrossRef]

Edgar, J. S.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Eliel, E. R.

Fiorini, G. S.

G. S. Fiorini and D. T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” Biotechniques 38(3), 429–446 (2005).
[CrossRef] [PubMed]

G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
[CrossRef]

Flossmann, F.

Fong, C.

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Frank, T. G.

Franke-Arnold, S.

Friese, M. E. J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

Gahagan, K. T.

Gold, J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

Golic, M.

Götte, J. B.

Grier, D. G.

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901–133904 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Hagberg, P.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

Hanstorp, D.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

Heckenberg, N. R.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
[CrossRef] [PubMed]

G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007).
[CrossRef] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Indebetouw, G.

G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[CrossRef]

Jeffries, G. D. M.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew. Chem. Int. Ed. 46(8), 1326–1328 (2007).
[CrossRef]

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
[CrossRef]

Kennedy, S. A.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
[CrossRef]

Knöner, G.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
[CrossRef] [PubMed]

G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007).
[CrossRef] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Kuo, J. S.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew. Chem. Int. Ed. 46(8), 1326–1328 (2007).
[CrossRef]

Kuyper, C. L.

G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
[CrossRef]

Ladavac, K.

Lawson, P.

Leach, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

Lee, W. M.

W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[CrossRef]

Levy, U.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[CrossRef]

Lim, D. S. W.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
[CrossRef]

Loke, V. L. Y.

Lorenz, R. M.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

MacDonald, M. P.

McGloin, D.

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Mushfique, H.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

Ng, L. Y.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

Nieminen, T. A.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
[CrossRef] [PubMed]

G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007).
[CrossRef] [PubMed]

Nienhuis, G.

O’Holleran, K.

Oemrawsingh, S. S. R.

Padgett, M.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Padgett, M. J.

J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008).
[CrossRef] [PubMed]

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Progress in Optics 39, 291–372 (1999).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Parkin, S.

Parkin, S. J.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
[CrossRef] [PubMed]

Pasko, V. A.

I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
[CrossRef]

Porterfield, J. Z.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
[CrossRef]

Preece, D.

Prentice, P. A.

Rogers, J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
[CrossRef]

Rubinsztein-Dunlop, H.

G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007).
[CrossRef] [PubMed]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
[CrossRef] [PubMed]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

Schiro, P. G.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

Schueller, O. J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
[CrossRef]

Shamai, R.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[CrossRef]

Shelby, J. P.

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Sibbett, W.

Simpson, N. B.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Slyusar, V. V.

I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
[CrossRef]

Soskin, M. S.

I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
[CrossRef]

Spalding, G. C.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Swartzlander, G. A.

Szabo, M. J.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
[CrossRef]

Teslow, H.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
[CrossRef]

Vasnetsov, M. V.

I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
[CrossRef]

Walsh, K.

Whitesides, G. M.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
[CrossRef]

Woerdman, J. P.

S. S. R. Oemrawsingh, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices,” J. Opt. Soc. Am. A 21(11), 2089–2096 (2004).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Yao, E.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

Yen, G. S.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

Yuan, X. C.

W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[CrossRef]

Zhao, Y. Q.

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Zhao, Y. X.

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

Anal. Chem. (1)

R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007).
[CrossRef]

Angew. Chem. Int. Ed. (1)

G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew. Chem. Int. Ed. 46(8), 1326–1328 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Biotechniques (1)

G. S. Fiorini and D. T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” Biotechniques 38(3), 429–446 (2005).
[CrossRef] [PubMed]

J. Mod. Opt. (2)

G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt. 40(1), 73–87 (1993).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).
[CrossRef]

I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lab Chip (3)

G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003).
[CrossRef]

J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009).
[CrossRef] [PubMed]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (1)

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[CrossRef]

N. J. Phys. (1)

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

Nano Lett. (1)

G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

Opt. Commun. (3)

M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[CrossRef]

W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901–133904 (2003).
[CrossRef] [PubMed]

Phys. Rev.A, Atomic Molec. Opt. Phys. (1)

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002).
[CrossRef]

Progress in Optics (1)

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Progress in Optics 39, 291–372 (1999).
[CrossRef]

Sens. Actuators A Phys. (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999).
[CrossRef]

Other (2)

R. A. Instruments, “Sucrose solution Brix values versus refractive index,” (2008).

Philips, “Fluid Focus”, retrieved http://www.research.philips.com/technologies/projects/fluidfocus.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Generation of LG01 beams. (a) Illustration showing the generation of the binary hologram pattern, by combining the spiral phase profile with a blaze kinoform then binarizing the result through thresholding. (b) Theoretical output of the first diffracted-order mode. (c) Experimental measurement of the first diffracted-order mode. Insets in (b) and (c) show the line profiles through the center of the beam. The scale bar in (c) represents 1mm.

Fig. 5
Fig. 5

Interference images of the generated modes with a plane wave. The left panel (a) shows a schematic of the setup to generate the interference on a camera, with a propagation distance from hologram to camera of 2.5m. M1, M2 are mirrors, L1-L2 and L3-L4 are telescoping lens pairs, Pol is a polarizer, BS is a polarizing beam splitter, WP is a half-wave plate, ND is a neutral density filter, FH is the fluidic hologram, and M/C is a mirror in the interference setup or the beam profile camera in the setup used to image the modes in Fig. 4. Panels (b) & (e) are mode images taken on the CCD camera. (c) & (f) are raw interference images of the LG mode interfered with an expanded Gaussian beam. (d) & (g) are threshold images of (c) & (f) to illustrate the characteristic fork structure. The pattern in (d) matches the binary mask used to generate the fluidic hologram, suggesting the resulting mode has an l index of 1. The scale bar in (b) represents 4mm, (b) and (e) are scaled the same. The scale bar in (c) represents 0.5mm, (c-d) and (f-g) are all scaled the same.

Fig. 2
Fig. 2

Schematic illustration and image of the constructed fluidic-hologram device. (a) A 3D rendering of the device, showing fluidic input-output ports. (b) A photograph of two fully assembled fluidic holograms bonded to a glass coverslip, with access ports punched for the two holograms. The scale bar in the image represents 2 mm.

Fig. 3
Fig. 3

Outline of the fabrication procedure to form a fluidic hologram, illustrating the key stages. The silicon wafer is coated with a negative photoresist, exposed to UV through the photomask, then developed forming a master. This master is fluorosilane treated and a PDMS cast is made. Port holes are punched into the PDMS cast for tubing and then bonded to a glass coverslip using an oxygen plasma treatment.

Fig. 4
Fig. 4

Five examples of experimental measurements of the first diffraction-order beam generated from a single fluidic hologram, with a varied refractive index solution content, taken at a propagation distance of 0.7m. Panels (a) to (e) show the generated modes with path-length differences from less than λ/2 to greater than λ/2, created by varying the sucrose concentration. Each panel is noted with the refractive-index of the medium contained within the fluidic hologram. These beam profile were measured using the setup displayed in Fig. 5(a). The scale bar in (a) represents 1mm.

Fig. 6
Fig. 6

Changes in intensity as a function of refractive-index. (a) A plot of the first-order intensity versus the solution refractive-index, exhibiting a sinusoidal variation. The solid trend line illustrates a refractive-index periodicity of 0.043. The dashed trend line indicates an overall power attenuation, suggesting an increase in absorption/scatter of the illuminating light as the sucrose concentration is increased. (b) A comparison plot illustrating the inversely proportional response of the zeroth and first-order diffraction modes, from a linear fluidic grating of the same periodicity as the blazing function used in our fluidic hologram. Intensities were measured from linescans of mode images taken across the polarization axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

upl(r,ϕ,z)=Cw(z)(r2w(z))|l|exp(-r2w2(z))Lpl(2r2w2)exp(ikr2z2(z2+zR2))×exp(ilϕ)exp(i(2p+|l|+1)arctan(zzR))

Metrics