Abstract

1.55-µm vertical cavity surface-emitting low-parasitic lasers show open eyes up to 22-Gb/s modulation speed. Uncooled error-free operation over a wide temperature range up to 85°C under constant bias conditions is demonstrated at 12.5-Gb/s data rate. At these fixed bias conditions the laser characteristics are practically invariant with temperature. These are the highest data-rates reported from a long-wavelength VCSEL structure to date.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
  2. F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).
  3. A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, and E. Kapon, “10 Gbps VCSELs with High Single Mode Output in 1310nm and 1550 nm Wavelength Bands”, Proc. OFC/NFOEC 2008, (San Diego, USA, 2008), OThS2, pp. 1–3.
  4. Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).
  5. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).
  6. M.-C. Amann and W. Hofmann, “InP-Based Long-Wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 861–868 (2009).
  7. M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).
  8. W. Hofmann, InP-based Long-Wavelength VCSELs and VCSEL Arrays for High-Speed Optical Communication, (Sel. Topics Semiconductor Phys. Technol., 99, Munich, 2009), http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20081119-679286-1-5 .
  9. W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).
  10. M. Müller, W. Hofmann, G. Böhm, and M.-C. Amann, “Short-Cavity Long-Wavelength VCSELs with Modulation-Bandwidth in Excess of 15 GHz,” IEEE Photon. Technol. Lett. (accepted for publication).

2009 (4)

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

M.-C. Amann and W. Hofmann, “InP-Based Long-Wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 861–868 (2009).

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).

2008 (1)

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

2007 (1)

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

2006 (1)

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

Amann, M.-C.

M.-C. Amann and W. Hofmann, “InP-Based Long-Wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 861–868 (2009).

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

M. Müller, W. Hofmann, G. Böhm, and M.-C. Amann, “Short-Cavity Long-Wavelength VCSELs with Modulation-Bandwidth in Excess of 15 GHz,” IEEE Photon. Technol. Lett. (accepted for publication).

Bimberg, D.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Boffi, P.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

Böhm, G.

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

M. Müller, W. Hofmann, G. Böhm, and M.-C. Amann, “Short-Cavity Long-Wavelength VCSELs with Modulation-Bandwidth in Excess of 15 GHz,” IEEE Photon. Technol. Lett. (accepted for publication).

Boletti, A.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

Bornholdt, C.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Chao, L.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

Dähne, M.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Doi, H.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Eisele, H.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Fiol, G.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Fujii, K.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Gatto, A.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

Gustavsson, J.

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

Haglund, Å.

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

Haisler, V.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Hashimoto, J.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Hofmann, W.

M.-C. Amann and W. Hofmann, “InP-Based Long-Wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 861–868 (2009).

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

M. Müller, W. Hofmann, G. Böhm, and M.-C. Amann, “Short-Cavity Long-Wavelength VCSELs with Modulation-Bandwidth in Excess of 15 GHz,” IEEE Photon. Technol. Lett. (accepted for publication).

Hopfer, F.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Ishizuka, T.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Joel, A.

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

Katsuyama, T.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Kovsh, A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Koyama, K.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Krestnikov, I.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Kuntz, M.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Larsson, A.

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

Ledentsov, N.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Lenz, A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Livshits, D.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Martinelli, M.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

Maute, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

Mikhrin, S.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Mori, H.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Müller, M.

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).

M. Müller, W. Hofmann, G. Böhm, and M.-C. Amann, “Short-Cavity Long-Wavelength VCSELs with Modulation-Bandwidth in Excess of 15 GHz,” IEEE Photon. Technol. Lett. (accepted for publication).

Mutig, A.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Neumeyr, C.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

Onishi, Y.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Ortsiefer, M.

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

Rönneberg, E.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

Rosskopf, J.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

Saga, N.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Shau, R.

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

Shchukin, V.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Sköld, M.

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

Stock, E.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Warming, T.

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Westbergh, P.

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

Yamada, T.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Yamaguchi, A.

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

Zhang, S.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

Electron. Lett. (1)

M. Ortsiefer, W. Hofmann, E. Rönneberg, A. Boletti, A. Gatto, P. Boffi, J. Rosskopf, R. Shau, C. Neumeyr, G. Böhm, M. Martinelli, and M.-C. Amann, “High speed 1.3 µm VCSELs for 12.5 Gbit/s optical interconnects,” Electron. Lett. 44(16), 974–975 (2008).

IEEE J. Sel. Top. Quantum Electron. (4)

P. Westbergh, J. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-Speed, Low-Current-Density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).

F. Hopfer, A. Mutig, G. Fiol, M. Kuntz, V. Shchukin, V. Haisler, T. Warming, E. Stock, S. Mikhrin, I. Krestnikov, D. Livshits, A. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N. Ledentsov, and D. Bimberg, “20 Gb/s 85°C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1302–1308 (2007).

Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Sel. Top. Quantum Electron. 15, 838–843 (2009).

M.-C. Amann and W. Hofmann, “InP-Based Long-Wavelength VCSELs and VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 861–868 (2009).

IEEE Photon. Technol. Lett. (3)

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission Using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424-426 (2006).

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55 µm VCSEL with Enhanced Modulation Bandwidth and Temperature Range,” IEEE Photon. Technol. Lett. 21(13), 923–925 (2009).

M. Müller, W. Hofmann, G. Böhm, and M.-C. Amann, “Short-Cavity Long-Wavelength VCSELs with Modulation-Bandwidth in Excess of 15 GHz,” IEEE Photon. Technol. Lett. (accepted for publication).

Other (2)

W. Hofmann, InP-based Long-Wavelength VCSELs and VCSEL Arrays for High-Speed Optical Communication, (Sel. Topics Semiconductor Phys. Technol., 99, Munich, 2009), http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20081119-679286-1-5 .

A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, and E. Kapon, “10 Gbps VCSELs with High Single Mode Output in 1310nm and 1550 nm Wavelength Bands”, Proc. OFC/NFOEC 2008, (San Diego, USA, 2008), OThS2, pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the high-speed vertical-cavity surface-emitting laser device. A reduction of parasitic response was achieved by a low-doped layer in the overgrowth. An equivalent circuit of laser parasitics is inset.

Fig. 2
Fig. 2

L-I-V characteristics of 1.55 µm VCSEL for 25°C, 85°C and 115°C. Dashed: CW under large-signal modulation (500 ns pulse, 50% duty cycle). Solid lines: CW. Laser operates CW up to 120°C. Single-mode spectrum inset. The polarization-mode is suppressed by more than 30 dB, and higher order transverse modes are suppressed more than 50 dB.

Fig. 3
Fig. 3

Small-signal modulation performance of a high-speed long-wavelength VCSEL at room-temperature for different bias-currents. The symbols represent the measured data. The solid-lines are fit to Eq. (2) squared for intrinsic parameter extraction.

Fig. 4
Fig. 4

Extracted parameters from small-signal modulation characterization and parameter fitting in comparison to the previous design [6] with higher parasitics and less differential gain from the quantum-wells. In (a), modulation bandwidth and resonance frequency are plotted versus the square-root of laser-current above threshold, in (b) the K-factor is derived.

Fig. 5
Fig. 5

Eye diagrams of a 1.55-µm high-speed VCSEL at 25°C and 231-1 PRBS sequence. The bit-rate is varied from 10 Gb/s up to 25 Gb/s. Clear open eyes up to 22 Gb/s. The electrical driver (upper left) showed significant rise and fall-times. Eye at 25 Gb/s may be limited from the detector-response.

Fig. 6
Fig. 6

Characteristics of 1.55-µm VCSEL versus temperature. Modulated output-power (pulsed, 50% duty cycle), threshold current and modulation bandwidth are practically constant at constant driving conditions (here: 8 mA). This unique VCSEL feature can redundantize closed-loop power monitoring and temperature control.

Fig. 7
Fig. 7

Large-signal modulation performance from 25°C to 85°C: (a) BER-measurement at 12.5-Gb/s; constant driving conditions (IBias =8 mA). (b) Eye-diagrams at 60°C for optimum and at fixed driving conditions corresponding to BER-data in (a). All experiments were carried out back-to-back (BTB).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τpar=CaRaRm+Z50ΩRm+Ra+Z50Ω=12π fpar
H(f)=ηd,Lηd,PD·fR2fR2+jγ2πff2·11+jffpar,
γ=fR2·(4π2τP(1+Γapa))K+δδNJth+JspΓSγ0

Metrics