Abstract

We report efficient acousto-optic control of speckle contrast at the output of multimode fibers (MMFs) using a cylindrical piezoelectric transducer (PZT) vibrating in the radial direction. With appropriate packaging of an MMF around the PZT, periodic stretching and subsequent intensity modulation were achieved over the wound fiber to result in time-averaged smoothing of the output within a short time. It was experimentally confirmed that light passed through the vibrating PZT-fiber assembly maintains the virtually partial coherence irrespective of the guide length and power splitting. Real-time vibration-off/on movies were presented, and their single-frame excerpts were analyzed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, Englewood, CO, 2006).
  2. T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
    [CrossRef]
  3. H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
    [CrossRef]
  4. P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
    [CrossRef]
  5. K.-I. Sato and K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. 29(7), 1017–1024 (1981).
    [CrossRef]
  6. Y. Jeong, D. Lee, J. W. Lee, and K. Oh, “Fiber-optic color synthesizer,” Opt. Lett. 31(14), 2112–2114 (2006).
    [CrossRef] [PubMed]
  7. J. K. Kim, H. R. Kim, A. Tünnermann, and K. Oh, “Synthesis of pure white color and its equal power, equal chromatic splitting through a novel 3x3 fiber optic visible multiplexer,” Opt. Express 16(22), 17319–17328 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-22-17319 .
    [CrossRef] [PubMed]
  8. A. P. Povilus, S. E. Olson, R. R. Mhaskar, B.-K. Teo, J. R. Guest, and G. Raithel, “Time averaging of multimode optical fiber output for a magneto-optical trap,” J. Opt. Soc. Am. B 22(2), 311–314 (2005).
    [CrossRef]
  9. Y. B. Yeo, H. J. Jeong, Y. W. Koh, and B. Y. Kim, “All fiber-optic polarization scrambler,” presented at the Second Optoelectronics and Communications Conference, Seoul, Korea, 8–11 July 1997.
  10. O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
    [CrossRef]
  11. J. O. Kim, K. K. Hwang, and H. G. Jeong, “Radial vibration characteristics of piezoelectric cylindrical transducers,” J. Sound Vibrat. 276(3-5), 1135–1144 (2004).
    [CrossRef]
  12. B. Daino, G. de Marchis, and S. Piazzolla, “Analysis and measurement of modal noise in an optical fibre,” Electron. Lett. 15(23), 755–756 (1979).
    [CrossRef]
  13. E. G. Rawson, J. W. Goodman, and R. E. Norton, “Analysis and measurement of the modal-noise probability distribution for a step-index optical fiber,” Opt. Lett. 5(8), 357–358 (1980).
    [CrossRef] [PubMed]
  14. D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
    [CrossRef]

2008

2006

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Y. Jeong, D. Lee, J. W. Lee, and K. Oh, “Fiber-optic color synthesizer,” Opt. Lett. 31(14), 2112–2114 (2006).
[CrossRef] [PubMed]

2005

D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
[CrossRef]

A. P. Povilus, S. E. Olson, R. R. Mhaskar, B.-K. Teo, J. R. Guest, and G. Raithel, “Time averaging of multimode optical fiber output for a magneto-optical trap,” J. Opt. Soc. Am. B 22(2), 311–314 (2005).
[CrossRef]

2004

J. O. Kim, K. K. Hwang, and H. G. Jeong, “Radial vibration characteristics of piezoelectric cylindrical transducers,” J. Sound Vibrat. 276(3-5), 1135–1144 (2004).
[CrossRef]

1996

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[CrossRef]

1992

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[CrossRef]

1985

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[CrossRef]

1981

K.-I. Sato and K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. 29(7), 1017–1024 (1981).
[CrossRef]

1980

1979

B. Daino, G. de Marchis, and S. Piazzolla, “Analysis and measurement of modal noise in an optical fibre,” Electron. Lett. 15(23), 755–756 (1979).
[CrossRef]

Ambar, H.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[CrossRef]

Aoki, Y.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[CrossRef]

Asakura, T.

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[CrossRef]

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[CrossRef]

Asatani, K.

K.-I. Sato and K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. 29(7), 1017–1024 (1981).
[CrossRef]

Bae, S. C.

D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
[CrossRef]

Borovkov, A. I.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Daino, B.

B. Daino, G. de Marchis, and S. Piazzolla, “Analysis and measurement of modal noise in an optical fibre,” Electron. Lett. 15(23), 755–756 (1979).
[CrossRef]

de Marchis, G.

B. Daino, G. de Marchis, and S. Piazzolla, “Analysis and measurement of modal noise in an optical fibre,” Electron. Lett. 15(23), 755–756 (1979).
[CrossRef]

Fuhr, P. L.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[CrossRef]

Goodman, J. W.

Guest, J. R.

Huston, D. R.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[CrossRef]

Hwang, K. K.

J. O. Kim, K. K. Hwang, and H. G. Jeong, “Radial vibration characteristics of piezoelectric cylindrical transducers,” J. Sound Vibrat. 276(3-5), 1135–1144 (2004).
[CrossRef]

Iwai, T.

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[CrossRef]

Jeong, H. G.

J. O. Kim, K. K. Hwang, and H. G. Jeong, “Radial vibration characteristics of piezoelectric cylindrical transducers,” J. Sound Vibrat. 276(3-5), 1135–1144 (2004).
[CrossRef]

Jeong, Y.

Kajenski, P. J.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[CrossRef]

Khlybov, A. V.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Kim, D. U.

D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
[CrossRef]

Kim, H. R.

Kim, J.

D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
[CrossRef]

Kim, J. K.

Kim, J. O.

J. O. Kim, K. K. Hwang, and H. G. Jeong, “Radial vibration characteristics of piezoelectric cylindrical transducers,” J. Sound Vibrat. 276(3-5), 1135–1144 (2004).
[CrossRef]

Kim, T.-Y.

D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
[CrossRef]

Kotov, O. I.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Lee, D.

Lee, J. W.

Liokumovich, L. B.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Markov, S. I.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Medvedev, A. V.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Mhaskar, R. R.

Norton, R. E.

Oh, K.

Olson, S. E.

Park, C.-S.

D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
[CrossRef]

Piazzolla, S.

B. Daino, G. de Marchis, and S. Piazzolla, “Analysis and measurement of modal noise in an optical fibre,” Electron. Lett. 15(23), 755–756 (1979).
[CrossRef]

Povilus, A. P.

Raithel, G.

Rawson, E. G.

Rukavishnikov, V. A.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Sato, K.-I.

K.-I. Sato and K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. 29(7), 1017–1024 (1981).
[CrossRef]

Shevchenko, D. V.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Takai, N.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[CrossRef]

Teo, B.-K.

Tünnermann, A.

Appl. Phys. B

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[CrossRef]

Electron. Lett.

B. Daino, G. de Marchis, and S. Piazzolla, “Analysis and measurement of modal noise in an optical fibre,” Electron. Lett. 15(23), 755–756 (1979).
[CrossRef]

IEEE Photon. Technol. Lett.

D. U. Kim, S. C. Bae, J. Kim, T.-Y. Kim, C.-S. Park, and K. Oh, “Hard polymer cladding fiber (HPCF) links for high-speed short reach 1×4 passive optical network (PON) based on all-HPCF compatible fused taper power splitter,” IEEE Photon. Technol. Lett. 17(11), 2355–2357 (2005).
[CrossRef]

IEEE Trans. Commun.

K.-I. Sato and K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. 29(7), 1017–1024 (1981).
[CrossRef]

J. Lightwave Technol.

P. J. Kajenski, P. L. Fuhr, and D. R. Huston, “Mode coupling and phase modulation in vibrating waveguides,” J. Lightwave Technol. 10(9), 1297–1301 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Sound Vibrat.

J. O. Kim, K. K. Hwang, and H. G. Jeong, “Radial vibration characteristics of piezoelectric cylindrical transducers,” J. Sound Vibrat. 276(3-5), 1135–1144 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84(5), 765–781 (1996).
[CrossRef]

Tech. Phys.

O. I. Kotov, A. V. Khlybov, L. B. Liokumovich, S. I. Markov, A. V. Medvedev, V. A. Rukavishnikov, A. I. Borovkov, and D. V. Shevchenko, “Polarization modulation of light in an optical waveguide under lateral compression,” Tech. Phys. 51(11), 1494–1499 (2006).
[CrossRef]

Other

Y. B. Yeo, H. J. Jeong, Y. W. Koh, and B. Y. Kim, “All fiber-optic polarization scrambler,” presented at the Second Optoelectronics and Communications Conference, Seoul, Korea, 8–11 July 1997.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, Englewood, CO, 2006).

Supplementary Material (1)

» Media 1: MOV (4057 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the PZT-fiber assembly. The inset (a) shows the dimensions of the MMFs used in our experiments and their refractive index profiles. The inset (b) shows exaggerated cross-sectional views of the assembly before (upper) and after (lower) stretching.

Fig. 2
Fig. 2

The contrast of the intensity as a function of the driven frequency for 10 Vpp. stretching.

Fig. 3
Fig. 3

Single-frame excerpts from a video recording of fiber output at the near and far fields of the GI-MMF and the HPCF through the CCD camera for the vibration-off/on states with 40 Vpp (Media 1). The bottom images show 20-time magnifications of the central regions for each vibration-on state.

Fig. 4
Fig. 4

Line profiles for near and far fields of the GI-MMF and the HPCF marked as green horizontal lines in Fig. 3. Chaotic lines were significantly relieved at the illuminated region.

Fig. 5
Fig. 5

Experimentally obtained PDFs as a function of relative intensity.

Fig. 6
Fig. 6

Fiber output images of the 100-m-long HPCF for the vibration-off/on state.

Fig. 7
Fig. 7

Schematic diagram of the 1 × 3 HPCF beam multiplexer and their vibration-off/on images at three output ports.

Tables (1)

Tables Icon

Table 1 The average speckle size and the fiber output diameters in the number of pixels

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ΔPm=n=1Nhmn(PmPn),
hmn=Kmn2Fmn2,
Fmn=L/2L/2f(z)ei(βmβn)zdz,
ΔR=δR(ωv)V0sin(ωvt),
ΔFmn(t)=2πδR(ωv)ntV0sin(ωvt)πR0πR0ei(βmβn)zdz            =4π2δR(ωv)ntR0V0sin(ωvt)sinc(R0(βnβm)),
Δhmn(t)=Cmn(R0)[KmnδR(ωv)V0]2nt2sin2(ωvt),
C=I2I2I=σII,
p(I/I)=NN(I/I)N1exp[N(I/I)]IΓ(N),

Metrics