Abstract

In2O3 nanowires can be used effectively as building blocks in the production of electronic circuits used in transparent and flexible electronic devices. The fabrication of these devices requires a controlled assembly of nanowires at crucial places and times. However, this kind of controlled assembly, which results in the fusion of nanowires to circuits, is still very difficult to execute. In this study, we demonstrate the benefits of using various lengths of In2O3 nanowires by using non-contact mechanisms, such as scanning optical tweezers, to place them on designated targets during the fabrication process. Furthermore, these nanowires can be stabilized at both ends of the conducting wires using a focused laser, and later in the process, the annealed technique, so that proper flow of electrons is affected.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
    [CrossRef]
  2. G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
    [CrossRef]
  3. S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
    [CrossRef]
  4. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
    [CrossRef] [PubMed]
  5. G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
    [CrossRef]
  6. W. U. Wang, C. Chen, L. Keng-hui, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” in Proceeding of the National Academy of Sciences of the USA 102, 3208–3212 (2005).
  7. E. C. Walter, F. Favier, and R. M. Penner, “Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches,” Anal. Chem. 74(7), 1546–1553 (2002).
    [CrossRef] [PubMed]
  8. A. M. Zaitsev, A. M. Levine, and S. H. Zaidi, “Temperature and chemical sensor based on FIB-written carbon nanowires,” IEEE Sensors 8(6), 849–856 (2008).
    [CrossRef]
  9. N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
    [CrossRef]
  10. Q. Li and V. W.-W. Yam, “Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires,” Angew. Chem. 119(19), 3556–3559 (2007).
    [CrossRef]
  11. H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
    [CrossRef] [PubMed]
  12. D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003).
    [CrossRef]
  13. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
    [CrossRef]
  14. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001).
    [CrossRef] [PubMed]
  15. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
    [CrossRef]
  16. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
    [CrossRef] [PubMed]
  17. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
    [CrossRef] [PubMed]
  18. A. T. Ohta, S. L. Neale, H.-Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in Proceedings of the IEEE/LEOS Optical MEMS and Nanophotonics (Freiburg, Germany 2008), pp. 7–8.
  19. R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38(22), 4861–4869 (1999).
    [CrossRef]
  20. R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40(12), 1961–1973 (2001).
    [CrossRef]
  21. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13(22), 8906–8912 (2005).
    [CrossRef] [PubMed]
  22. T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
    [CrossRef]
  23. ChanHyuk Nam, Dongjin Lee, Daehie Hong and Jong-Heun Lee, “Manipulation of nano devices with optical tweezers,” in Proceeding of Nanoengineering Symposium (Daejeon, Korea, 2005), pp. 387–391.
  24. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [CrossRef] [PubMed]
  25. A. Balijepalli, T. W. LeBrun, and S. K. Gupta, “A flexible system framework for a nanoassembly cell using optical tweezers,” in Proceedings of the ASME Design Engineering Technical Conference (Philadelphia, Pennsylvania, USA 2006).
  26. A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. M. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15(18), 11629–11639 (2007).
    [CrossRef] [PubMed]
  27. J. Plewa, E. Tanner, D. M. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12(9), 1978–1981 (2004).
    [CrossRef] [PubMed]
  28. S.-W. Lee, T. Lee, and Y.-G. Lee, “Stable manipulating of nanowires by line optical tweezers with haptic feedback,” Proc. SPIE 6644, 66441X (2007).
    [CrossRef]
  29. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
    [CrossRef] [PubMed]
  30. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
    [CrossRef] [PubMed]
  31. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the T-matrix formalism: erratum,” Opt. Express 15(22), 14618 (2007).
    [CrossRef] [PubMed]
  32. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006).
    [CrossRef] [PubMed]

2009

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

2008

A. M. Zaitsev, A. M. Levine, and S. H. Zaidi, “Temperature and chemical sensor based on FIB-written carbon nanowires,” IEEE Sensors 8(6), 849–856 (2008).
[CrossRef]

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

2007

S.-W. Lee, T. Lee, and Y.-G. Lee, “Stable manipulating of nanowires by line optical tweezers with haptic feedback,” Proc. SPIE 6644, 66441X (2007).
[CrossRef]

Q. Li and V. W.-W. Yam, “Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires,” Angew. Chem. 119(19), 3556–3559 (2007).
[CrossRef]

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. M. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15(18), 11629–11639 (2007).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the T-matrix formalism: erratum,” Opt. Express 15(22), 14618 (2007).
[CrossRef] [PubMed]

2006

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006).
[CrossRef] [PubMed]

2005

R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13(22), 8906–8912 (2005).
[CrossRef] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[CrossRef] [PubMed]

2004

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

J. Plewa, E. Tanner, D. M. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12(9), 1978–1981 (2004).
[CrossRef] [PubMed]

2003

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003).
[CrossRef]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

2002

E. C. Walter, F. Favier, and R. M. Penner, “Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches,” Anal. Chem. 74(7), 1546–1553 (2002).
[CrossRef] [PubMed]

2001

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001).
[CrossRef] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[CrossRef] [PubMed]

R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40(12), 1961–1973 (2001).
[CrossRef]

2000

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

1999

Agarwal, R.

Ashman, M.

Bandyopadhyay, S.

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Bao, H.

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

Borghese, F.

Campbell, A. I.

Cheong, F.-C.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Chiou, P.-Y.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Cui, X.

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

Cui, Y.

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Denti, P.

Dogterom, M.

Duan, X.

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Facchetti, A.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Favier, F.

E. C. Walter, F. Favier, and R. M. Penner, “Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches,” Anal. Chem. 74(7), 1546–1553 (2002).
[CrossRef] [PubMed]

Gauthier, R. C.

Geckeler, K. E.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

Goldberger, J.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Grier, D.

Grier, D. G.

Grover, C. P.

Guo, J.

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

He, R.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Hess, C.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Hong, W.-K.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

Huang, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001).
[CrossRef] [PubMed]

Hwang, H.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

Iatì, M. A.

Ishikawa, F.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Jackson, T. N.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Jamshidi, A.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Janes, D. B.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Jin, S.

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003).
[CrossRef]

Jo, G.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

Jo, M.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

Ju, S.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Kim, F.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Kim, K.-H.

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Kim, T.-W.

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

Kouklin, N.

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Kwon, S.-S.

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

Ladavac, K.

Lauhon, L. J.

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Lee, S.-W.

S.-W. Lee, T. Lee, and Y.-G. Lee, “Stable manipulating of nanowires by line optical tweezers with haptic feedback,” Proc. SPIE 6644, 66441X (2007).
[CrossRef]

Lee, T.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

S.-W. Lee, T. Lee, and Y.-G. Lee, “Stable manipulating of nanowires by line optical tweezers with haptic feedback,” Proc. SPIE 6644, 66441X (2007).
[CrossRef]

Lee, Y.-G.

S.-W. Lee, T. Lee, and Y.-G. Lee, “Stable manipulating of nanowires by line optical tweezers with haptic feedback,” Proc. SPIE 6644, 66441X (2007).
[CrossRef]

Levine, A. M.

A. M. Zaitsev, A. M. Levine, and S. H. Zaidi, “Temperature and chemical sensor based on FIB-written carbon nanowires,” IEEE Sensors 8(6), 849–856 (2008).
[CrossRef]

Li, C. M.

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

Li, Q.

Q. Li and V. W.-W. Yam, “Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires,” Angew. Chem. 119(19), 3556–3559 (2007).
[CrossRef]

Lieber, C. M.

R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13(22), 8906–8912 (2005).
[CrossRef] [PubMed]

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003).
[CrossRef]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001).
[CrossRef] [PubMed]

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Liu, J.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Maeng, J.

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

Mallouk, T. E.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Maragò, O. M.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Marks, T. J.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Martin, B. R.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Mayer, T. S.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Mbindyo, J.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Menon, L.

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Mueth, D. M.

Nordquist, C. D.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Ohta, A. T.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Pauzauskie, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Penner, R. M.

E. C. Walter, F. Favier, and R. M. Penner, “Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches,” Anal. Chem. 74(7), 1546–1553 (2002).
[CrossRef] [PubMed]

Plewa, J.

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Rohrbach, A.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[CrossRef] [PubMed]

Roichman, Y.

Saija, R.

Schuck, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Shin, J.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Smith, P. A.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Sohn, J. I.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

Song, Q.

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

Song, S.

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

Sow, C.-H.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Sun, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Tanner, E.

Tao, A.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Thompson, D. W.

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

van Blaaderen, A.

van der Horst, A.

van Vugt, L. K.

Vanmaekelbergh, D. A. M.

Walter, E. C.

E. C. Walter, F. Favier, and R. M. Penner, “Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches,” Anal. Chem. 74(7), 1546–1553 (2002).
[CrossRef] [PubMed]

Wang, G.

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

Wang, J.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Wei, Q.

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001).
[CrossRef] [PubMed]

Welland, M. E.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

Whang, D.

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003).
[CrossRef]

Williams, P. F.

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Wong, A. Z.

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Woollam, J. A.

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

Wu, M. C.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Wu, Y.

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003).
[CrossRef]

Xia, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Xuan, Y.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Yam, V. W.-W.

Q. Li and V. W.-W. Yam, “Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires,” Angew. Chem. 119(19), 3556–3559 (2007).
[CrossRef]

Yang, H.

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

Yang, P.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Ye, P.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Yoon, A.

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

Yu, G.

Yu, T.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Zaidi, S. H.

A. M. Zaitsev, A. M. Levine, and S. H. Zaidi, “Temperature and chemical sensor based on FIB-written carbon nanowires,” IEEE Sensors 8(6), 849–856 (2008).
[CrossRef]

Zaitsev, A. M.

A. M. Zaitsev, A. M. Levine, and S. H. Zaidi, “Temperature and chemical sensor based on FIB-written carbon nanowires,” IEEE Sensors 8(6), 849–856 (2008).
[CrossRef]

Zhou, C.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Adv. Mater.

G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009).
[CrossRef]

Anal. Chem.

E. C. Walter, F. Favier, and R. M. Penner, “Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches,” Anal. Chem. 74(7), 1546–1553 (2002).
[CrossRef] [PubMed]

Angew. Chem.

Q. Li and V. W.-W. Yam, “Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires,” Angew. Chem. 119(19), 3556–3559 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001).
[CrossRef]

G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007).
[CrossRef]

Colloids and Surfaces A

G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008).
[CrossRef]

IEEE Sensors

A. M. Zaitsev, A. M. Levine, and S. H. Zaidi, “Temperature and chemical sensor based on FIB-written carbon nanowires,” IEEE Sensors 8(6), 849–856 (2008).
[CrossRef]

Nano Lett.

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003).
[CrossRef]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Nanotechnology

H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008).
[CrossRef] [PubMed]

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Nat. Mater.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol.

S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007).
[CrossRef]

Nat. Photonics

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[CrossRef] [PubMed]

Nature

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[CrossRef] [PubMed]

Proc. SPIE

S.-W. Lee, T. Lee, and Y.-G. Lee, “Stable manipulating of nanowires by line optical tweezers with haptic feedback,” Proc. SPIE 6644, 66441X (2007).
[CrossRef]

Science

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Other

W. U. Wang, C. Chen, L. Keng-hui, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” in Proceeding of the National Academy of Sciences of the USA 102, 3208–3212 (2005).

A. T. Ohta, S. L. Neale, H.-Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in Proceedings of the IEEE/LEOS Optical MEMS and Nanophotonics (Freiburg, Germany 2008), pp. 7–8.

A. Balijepalli, T. W. LeBrun, and S. K. Gupta, “A flexible system framework for a nanoassembly cell using optical tweezers,” in Proceedings of the ASME Design Engineering Technical Conference (Philadelphia, Pennsylvania, USA 2006).

ChanHyuk Nam, Dongjin Lee, Daehie Hong and Jong-Heun Lee, “Manipulation of nano devices with optical tweezers,” in Proceeding of Nanoengineering Symposium (Daejeon, Korea, 2005), pp. 387–391.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the scanning optical tweezers

Fig. 2
Fig. 2

(a) SEM image of In2O3 nanowires. (b) SAED pattern of the In2O3 nanowire recorded along the <001> zone axis. (c) HRTEM image of an In2O3 nanowire

Fig. 3
Fig. 3

Electronic circuit composed of varying separations to accommodate various lengths of nanowires

Fig. 4
Fig. 4

Manipulation of an axially aligned nanowire. (a) Target Nanowire (b) Axially trapped nanowire (c), (d) Rotation of the nanowire using line optical trap while pushed against the upper coverglass (e), (f) Manipulation of nanowire using line optical trap while pushed against the upper coverglass (g)-(l) Sequence of nanowire assembly

Fig. 5
Fig. 5

Trapped and manipulated In2O3 nanowire and the formed junction

Fig. 6
Fig. 6

Current versus voltage (I-V) curves of the In2O3 nanowire device

Fig. 7
Fig. 7

Positional error of nanowires as function of the laser power. Vertical axis is in arbitrary unit.

Metrics