Abstract

We describe the thermal tuning of air-core Bragg waveguides, fabricated by controlled formation of delamination buckles within a multilayer stack of chalcogenide glass and polymer. The upper cladding mirror is a flexible membrane comprising high thermal expansion materials, enabling large tuning of the air-core dimensions for small changes in temperature. Measurements on the temperature dependence of feature heights showed good agreement with theoretical predictions. We applied this mechanism to the thermal tuning of modal cutoff conditions in waveguides with a tapered core profile. Due to the omnidirectional nature of the cladding mirrors, these tapers can be viewed as waveguide-coupled, tunable Fabry-Perot filters.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
    [CrossRef] [PubMed]
  2. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009).
    [CrossRef] [PubMed]
  3. H.-K. Chiu, F.-L. Hsiao, C.-H. Chan, and C.-C. Chen, “Compact and low-loss bent hollow waveguides with distributed Bragg reflector,” Opt. Express 16(19), 15069–15073 (2008).
    [CrossRef] [PubMed]
  4. F. Koyama, T. Miura, and Y. Sakurai, “Tunable hollow waveguides and their applications for photonic integrated circuits,” Electronics and Communications in Japan 29(Part 2), 9–19 (2006).
  5. A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
    [CrossRef]
  6. P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
    [CrossRef]
  7. Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
    [CrossRef]
  8. H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
    [CrossRef]
  9. S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
    [CrossRef]
  10. C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, “Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm,” Sensors and Actuators A 119(1), 57–62 (2005).
    [CrossRef]
  11. Y. Sakurai, H. Yamakawa, Y. Yokota, A. Matsutani, T. Sakaguchi, and F. Koyama, “Hollow Waveguide Distributed Bragg Reflector for Widely Tunable Optical Devices,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuM4.
  12. Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12(13), 2851–2856 (2004).
    [CrossRef] [PubMed]
  13. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
    [CrossRef] [PubMed]
  14. N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007).
    [CrossRef] [PubMed]
  15. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008).
    [CrossRef] [PubMed]
  16. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
    [CrossRef]
  17. M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
    [CrossRef]
  18. S. R. Choi, J. W. Hutchinson, and A. G. Evans, “Delamination of multilayer thermal barrier coatings,” Mech. Mater. 31(7), 431–447 (1999).
    [CrossRef]
  19. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and flexible free-standing all-dielectric omnidirectional reflectors,” Adv. Mater. 19(2), 193–196 (2007).
    [CrossRef]
  20. R.G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, J.N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” submitted for publication.

2009 (2)

2008 (3)

2007 (2)

N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007).
[CrossRef] [PubMed]

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and flexible free-standing all-dielectric omnidirectional reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[CrossRef]

2006 (1)

F. Koyama, T. Miura, and Y. Sakurai, “Tunable hollow waveguides and their applications for photonic integrated circuits,” Electronics and Communications in Japan 29(Part 2), 9–19 (2006).

2005 (1)

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, “Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm,” Sensors and Actuators A 119(1), 57–62 (2005).
[CrossRef]

2004 (3)

Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12(13), 2851–2856 (2004).
[CrossRef] [PubMed]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

2003 (1)

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

2002 (2)

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

1999 (1)

S. R. Choi, J. W. Hutchinson, and A. G. Evans, “Delamination of multilayer thermal barrier coatings,” Mech. Mater. 31(7), 431–447 (1999).
[CrossRef]

1998 (1)

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

1996 (1)

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
[CrossRef]

Azimi, M.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Aziz, M.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Bermel, P.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

Chan, C.-H.

Chang-Hasnain, C. J.

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, “Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm,” Sensors and Actuators A 119(1), 57–62 (2005).
[CrossRef]

Chen, C.-C.

Chiu, H.-K.

Choi, S. R.

S. R. Choi, J. W. Hutchinson, and A. G. Evans, “Delamination of multilayer thermal barrier coatings,” Mech. Mater. 31(7), 431–447 (1999).
[CrossRef]

Clement, T. J.

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and flexible free-standing all-dielectric omnidirectional reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[CrossRef]

Daleiden, J.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

DeCorby, R. G.

Duan, X.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

Evans, A. G.

S. R. Choi, J. W. Hutchinson, and A. G. Evans, “Delamination of multilayer thermal barrier coatings,” Mech. Mater. 31(7), 431–447 (1999).
[CrossRef]

Halbritter, H.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Haronian, D.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
[CrossRef]

Hawkins, A. R.

Hillmer, H.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Hsiao, F.-L.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, “Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm,” Sensors and Actuators A 119(1), 57–62 (2005).
[CrossRef]

Hutchinson, J. W.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

S. R. Choi, J. W. Hutchinson, and A. G. Evans, “Delamination of multilayer thermal barrier coatings,” Mech. Mater. 31(7), 431–447 (1999).
[CrossRef]

Ibanescu, M.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Irmer, S.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

Johnson, S. G.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Karagodsky, V.

Kimerling, L. C.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

Koyama, F.

Kühn, S.

Kumar, M.

Lee, K.-R.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Lo, Y. H.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
[CrossRef]

Lunt, E. J.

Maflah, L.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, “Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm,” Sensors and Actuators A 119(1), 57–62 (2005).
[CrossRef]

Measor, P.

Meissner, P.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Miura, T.

F. Koyama, T. Miura, and Y. Sakurai, “Tunable hollow waveguides and their applications for photonic integrated circuits,” Electronics and Communications in Japan 29(Part 2), 9–19 (2006).

Moon, M.-W.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Mozdy, E.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
[CrossRef]

Nguyen, H. T.

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and flexible free-standing all-dielectric omnidirectional reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[CrossRef]

Oh, K. H.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Pesala, B.

Phillips, B. S.

Ponnampalam, N.

Povinelli, M. L.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Prott, C.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Rangelov, V.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Riemenschneider, F.

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

Romer, F.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Sakaguchi, T.

Sakurai, Y.

F. Koyama, T. Miura, and Y. Sakurai, “Tunable hollow waveguides and their applications for photonic integrated circuits,” Electronics and Communications in Japan 29(Part 2), 9–19 (2006).

Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12(13), 2851–2856 (2004).
[CrossRef] [PubMed]

Schmidt, H.

Sedgwick, F. G.

Strassner, M.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Tarraf, A.

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Tayebati, P.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Tran, A. T. T. D.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
[CrossRef]

Vakhshoori, D.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Wada, K.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

Wang, P.

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Yi, Y.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

Zhou, Y.

Zhu, Z. H.

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
[CrossRef]

Acta Mater. (1)

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Adv. Mater. (1)

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and flexible free-standing all-dielectric omnidirectional reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[CrossRef]

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002).
[CrossRef]

Electron. Lett. (2)

H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002).
[CrossRef]

P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998).
[CrossRef]

Electronics and Communications in Japan (1)

F. Koyama, T. Miura, and Y. Sakurai, “Tunable hollow waveguides and their applications for photonic integrated circuits,” Electronics and Communications in Japan 29(Part 2), 9–19 (2006).

IEEE Photon. Technol. Lett. (2)

A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996).
[CrossRef]

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003).
[CrossRef]

Mech. Mater. (1)

S. R. Choi, J. W. Hutchinson, and A. G. Evans, “Delamination of multilayer thermal barrier coatings,” Mech. Mater. 31(7), 431–447 (1999).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Sens. Actuators, A (1)

C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, “Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm,” Sensors and Actuators A 119(1), 57–62 (2005).
[CrossRef]

Other (2)

Y. Sakurai, H. Yamakawa, Y. Yokota, A. Matsutani, T. Sakaguchi, and F. Koyama, “Hollow Waveguide Distributed Bragg Reflector for Widely Tunable Optical Devices,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuM4.

R.G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, J.N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” submitted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Shown is a schematic illustration of the change in height of a buckled hollow waveguide (end facet view) driven by an increase in temperature. A positive temperature change increases the compressive stress in the upper mirror, since it comprises materials with higher thermal expansion coefficient than the underlying silicon substrate. The added compressive stress results in a slight change in shape and increased peak height for the buckle.

Fig. 2
Fig. 2

(a) Optical profilometer scans for a buckled waveguide with 60 μm base width, at a series of fixed temperatures. The inset plot shows the top of the curves in greater detail. (b) Plot of the measured change in peak height versus change in temperature. The straight line is a linear fit to the data.

Fig. 3
Fig. 3

(a) Cross-sectional schematic of a tapered air-core waveguide with omnidirectional claddings, near a mode cutoff point. The black arrows depict the ray-optics model of vertical radiation at cutoff, and the red curve represents the vertical field profile (m = 1 case shown) at the cutoff point. An increase in core height due to increase in temperature causes a positional shift of the cutoff point. (b) Images captured by an infrared camera via a microscope, showing the shift in the m = 1 to 5 cutoff positions with temperature, for a wavelength of 1550 nm. (c) The experimental shift in out-coupling position plotted versus change in temperature, for mode orders 1 to 4. The straight lines are linear fits to the data.

Fig. 4
Fig. 4

(a) Spectral scans obtained at a fixed out-coupling point corresponding to the m = 2 mode, for a series of fixed temperatures. The inset shows the 16.5 °C data on a logarithmic scale. (b) Plot of peak out-coupling wavelength versus temperature, revealing a wavelength shift of ~0.45 nm/°C.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ=h43(σ0σC1)=h43((bbmin)21)2hb3bmin,
σC=π212E(1ν2)h2b2.
Δσ=E(1ν)ΔαΔT,
(δ+Δδ)2=4h23[(σ0+Δσ)σC1],
Δδ2h23δΔσσC.
ΔδΔT=8π2(1ν2)(1ν)b2δΔα.
ΔzΔTΔzΔδΔδΔT=1STΔδΔT,
Δλ0ΔTΔλ0ΔzΔzΔT=1DTΔzΔT,
ΔλFWHMzPDT+λ0(m+1)π(R1R)   ,

Metrics