Abstract

By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140° forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency. More importantly, the optically optimized device structure by setting the resonant wavelength at the peak wavelength of the intrinsic emission of the emitter and adding an effective outcoupling layer further enhances the device efficiency, at the same time, also reduces the color shift with viewing angles, leading to the simultaneous optimization in efficiency and angular emission characteristics in the fabricated ITOLEDs.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
    [CrossRef]
  2. J. Y. Lee, J. H. Kwon, and H. K. Chung, “High efficiency and low power consumption in active matrix organic light emitting diodes,” Org. Electron. 4(2-3), 143–148 (2003).
    [CrossRef]
  3. J.-H. Lee, X. Zhu, Y.-H. Lin, W. K. Choi, T.-C. Lin, S.-C. Hsu, H.-Y. Lin, and S.-T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
    [CrossRef] [PubMed]
  4. W. Ji, L. Zhang, R. Gao, L. Zhang, W. Xie, H. Zhang, and B. Li, “Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment,” Opt. Express 16(20), 15489–15494 (2008).
    [CrossRef] [PubMed]
  5. J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
    [CrossRef]
  6. C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005).
    [CrossRef]
  7. S. Kho, S. Sohn, and D. Jung, “Effects of N2 Plasma Treatment of the Al Bottom Cathode on the Characteristics of Top-Emission-Inverted Organic-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 42(Part 2, No. 5B), L552–L555 (2003).
    [CrossRef]
  8. C.-W. Chen, C.-L. Lin, and C.-C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85(13), 2469–2471 (2004).
    [CrossRef]
  9. H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
    [CrossRef]
  10. X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
    [CrossRef]
  11. M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
    [CrossRef]
  12. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
    [CrossRef]
  13. S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998).
    [CrossRef]
  14. T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
    [CrossRef]
  15. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
    [CrossRef]
  16. S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97(9), 093102 (2005).
    [CrossRef]
  17. Y. Meng, W. Xie, G. Xie, L. Zhang, Y. Zhao, J. Hou, and S. Liu, “Highly efficient blue top-emitting device with phase-shift adjustment layer,” Opt. Express 17(7), 5364–5372 (2009).
    [CrossRef] [PubMed]
  18. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
    [CrossRef]
  19. K. R. Choudhury, J. Yoon, and F. So, “LiF as an n-Dopant in Tris-(8-hydroxyquinoline) Aluminum Thin Films,” Adv. Mater. 20(8), 1456–1461 (2008).
    [CrossRef]
  20. H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
    [CrossRef]
  21. Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
    [CrossRef]
  22. M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996).
    [CrossRef]
  23. W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2(1), 1–36 (2001).
    [CrossRef]
  24. W. Gao and A. Kahn, “Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects,” Org. Electron. 3(2), 53–63 (2002).
    [CrossRef]
  25. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

2009 (2)

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Y. Meng, W. Xie, G. Xie, L. Zhang, Y. Zhao, J. Hou, and S. Liu, “Highly efficient blue top-emitting device with phase-shift adjustment layer,” Opt. Express 17(7), 5364–5372 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

2005 (6)

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005).
[CrossRef]

J.-H. Lee, X. Zhu, Y.-H. Lin, W. K. Choi, T.-C. Lin, S.-C. Hsu, H.-Y. Lin, and S.-T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
[CrossRef] [PubMed]

H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
[CrossRef]

X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
[CrossRef]

S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97(9), 093102 (2005).
[CrossRef]

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

2004 (1)

C.-W. Chen, C.-L. Lin, and C.-C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85(13), 2469–2471 (2004).
[CrossRef]

2003 (2)

J. Y. Lee, J. H. Kwon, and H. K. Chung, “High efficiency and low power consumption in active matrix organic light emitting diodes,” Org. Electron. 4(2-3), 143–148 (2003).
[CrossRef]

S. Kho, S. Sohn, and D. Jung, “Effects of N2 Plasma Treatment of the Al Bottom Cathode on the Characteristics of Top-Emission-Inverted Organic-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 42(Part 2, No. 5B), L552–L555 (2003).
[CrossRef]

2002 (2)

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[CrossRef]

W. Gao and A. Kahn, “Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects,” Org. Electron. 3(2), 53–63 (2002).
[CrossRef]

2001 (2)

W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2(1), 1–36 (2001).
[CrossRef]

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

1998 (2)

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998).
[CrossRef]

1996 (2)

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996).
[CrossRef]

1995 (1)

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

1994 (1)

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Akai, T.

M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996).
[CrossRef]

Berleb, S.

W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2(1), 1–36 (2001).
[CrossRef]

Bradley, D. D. C.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

Brütting, W.

W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2(1), 1–36 (2001).
[CrossRef]

Chen, C. H.

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[CrossRef]

Chen, C.-W.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005).
[CrossRef]

C.-W. Chen, C.-L. Lin, and C.-C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85(13), 2469–2471 (2004).
[CrossRef]

Cho, K.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Choi, H. W.

H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
[CrossRef]

Choi, W. K.

Choudhury, K. R.

K. R. Choudhury, J. Yoon, and F. So, “LiF as an n-Dopant in Tris-(8-hydroxyquinoline) Aluminum Thin Films,” Adv. Mater. 20(8), 1456–1461 (2008).
[CrossRef]

Chung, H. K.

J. Y. Lee, J. H. Kwon, and H. K. Chung, “High efficiency and low power consumption in active matrix organic light emitting diodes,” Org. Electron. 4(2-3), 143–148 (2003).
[CrossRef]

Deppe, D. G.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Dirr, S.

S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998).
[CrossRef]

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

Fisher, T. A.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

Furno, M.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Gao, R.

Gao, W.

W. Gao and A. Kahn, “Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects,” Org. Electron. 3(2), 53–63 (2002).
[CrossRef]

Gastel, M.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

Han, K.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Han, S.

S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97(9), 093102 (2005).
[CrossRef]

Heil, H.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

Hong, K.

H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
[CrossRef]

Hou, J.

Hsu, S.-C.

Huang, C.

S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97(9), 093102 (2005).
[CrossRef]

Huffaker, D. L.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Hung, L. S.

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[CrossRef]

Ishii, H.

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

Ito, E.

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

Jeong, C. H.

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

Jeong, K.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Ji, W.

Johannes, H.-H.

S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998).
[CrossRef]

Jordan, R. H.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

Jung, D.

S. Kho, S. Sohn, and D. Jung, “Effects of N2 Plasma Treatment of the Al Bottom Cathode on the Characteristics of Top-Emission-Inverted Organic-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 42(Part 2, No. 5B), L552–L555 (2003).
[CrossRef]

Kahn, A.

W. Gao and A. Kahn, “Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects,” Org. Electron. 3(2), 53–63 (2002).
[CrossRef]

Kang, S. J.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Karg, S.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

Kho, S.

S. Kho, S. Sohn, and D. Jung, “Effects of N2 Plasma Treatment of the Al Bottom Cathode on the Characteristics of Top-Emission-Inverted Organic-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 42(Part 2, No. 5B), L552–L555 (2003).
[CrossRef]

Kim, S. Y.

H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
[CrossRef]

Kim, T. W.

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

Kim, W.

H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
[CrossRef]

Kimura, T.

M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996).
[CrossRef]

Koo, J. M.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Kowalsky, W.

S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998).
[CrossRef]

Kwok, H.-S.

X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
[CrossRef]

Kwon, J. H.

J. Y. Lee, J. H. Kwon, and H. K. Chung, “High efficiency and low power consumption in active matrix organic light emitting diodes,” Org. Electron. 4(2-3), 143–148 (2003).
[CrossRef]

Lee, E. H.

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

Lee, J.

H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
[CrossRef]

Lee, J. H.

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

Lee, J. Y.

J. Y. Lee, J. H. Kwon, and H. K. Chung, “High efficiency and low power consumption in active matrix organic light emitting diodes,” Org. Electron. 4(2-3), 143–148 (2003).
[CrossRef]

Lee, J.-H.

Lei, C.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Leo, K.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Li, B.

Lidzey, D. G.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

Lim, J. T.

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

Lin, C. C.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Lin, C.-L.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005).
[CrossRef]

C.-W. Chen, C.-L. Lin, and C.-C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85(13), 2469–2471 (2004).
[CrossRef]

Lin, H.-Y.

Lin, T.-C.

Lin, Y.-H.

Liu, S.

Lu, Z.-H.

S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97(9), 093102 (2005).
[CrossRef]

Matsumura, M.

M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996).
[CrossRef]

Meng, Y.

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

Mückl, A. G.

W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2(1), 1–36 (2001).
[CrossRef]

Nitsche, R.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Noh, M.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Ortner, H.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

Ouchi, Y.

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

Park, K.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Pate, M. A.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

Peng, H.

X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
[CrossRef]

Phillips, J. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

Saito, M.

M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996).
[CrossRef]

Seki, K.

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

Shin, E.-C.

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

Skolnick, M. S.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

Slusher, R. E.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

So, F.

K. R. Choudhury, J. Yoon, and F. So, “LiF as an n-Dopant in Tris-(8-hydroxyquinoline) Aluminum Thin Films,” Adv. Mater. 20(8), 1456–1461 (2008).
[CrossRef]

Sohn, S.

S. Kho, S. Sohn, and D. Jung, “Effects of N2 Plasma Treatment of the Al Bottom Cathode on the Characteristics of Top-Emission-Inverted Organic-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 42(Part 2, No. 5B), L552–L555 (2003).
[CrossRef]

Steiger, J.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

Stößel, M.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

Sugiyama, K.

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

Sun, J.

X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
[CrossRef]

Thomschke, M.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

von Seggern, H.

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

Weaver, M. S.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

Whang, C. N.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Whittaker, D. M.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

Wiese, S.

S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998).
[CrossRef]

Wong, M.

X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
[CrossRef]

Wu, C.-C.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005).
[CrossRef]

C.-W. Chen, C.-L. Lin, and C.-C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85(13), 2469–2471 (2004).
[CrossRef]

Wu, S.-T.

Xie, G.

Xie, W.

Yang, C.-J.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005).
[CrossRef]

Yeom, G. Y.

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

Yi, Y.

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

Yoon, J.

K. R. Choudhury, J. Yoon, and F. So, “LiF as an n-Dopant in Tris-(8-hydroxyquinoline) Aluminum Thin Films,” Adv. Mater. 20(8), 1456–1461 (2008).
[CrossRef]

Yoshimura, D.

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

Zhang, H.

Zhang, L.

Zhao, Y.

Zhu, X.

J.-H. Lee, X. Zhu, Y.-H. Lin, W. K. Choi, T.-C. Lin, S.-C. Hsu, H.-Y. Lin, and S.-T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
[CrossRef] [PubMed]

X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
[CrossRef]

Adv. Mater. (2)

S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998).
[CrossRef]

K. R. Choudhury, J. Yoon, and F. So, “LiF as an n-Dopant in Tris-(8-hydroxyquinoline) Aluminum Thin Films,” Adv. Mater. 20(8), 1456–1461 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005).
[CrossRef]

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995).
[CrossRef]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

C.-W. Chen, C.-L. Lin, and C.-C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85(13), 2469–2471 (2004).
[CrossRef]

H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998).
[CrossRef]

J. Appl. Phys. (4)

M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996).
[CrossRef]

H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[CrossRef]

S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97(9), 093102 (2005).
[CrossRef]

J. Display Tech. (1)

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005).
[CrossRef]

J. Electrochem. Soc. (1)

J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007).
[CrossRef]

J. Mod. Opt. (1)

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Kho, S. Sohn, and D. Jung, “Effects of N2 Plasma Treatment of the Al Bottom Cathode on the Characteristics of Top-Emission-Inverted Organic-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 42(Part 2, No. 5B), L552–L555 (2003).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002).
[CrossRef]

Opt. Express (3)

Org. Electron. (3)

J. Y. Lee, J. H. Kwon, and H. K. Chung, “High efficiency and low power consumption in active matrix organic light emitting diodes,” Org. Electron. 4(2-3), 143–148 (2003).
[CrossRef]

W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2(1), 1–36 (2001).
[CrossRef]

W. Gao and A. Kahn, “Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects,” Org. Electron. 3(2), 53–63 (2002).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (1)

X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005).
[CrossRef]

Other (1)

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the planar inverted top-emitting device structure studied. On the basis of the optical design and calculation, the optimum structure is fixed as follows: Al/LiF or PbO/Alq3(25 nm)/BCP(5 nm)/Alq3: C545T(30 nm)/NPB(30 nm)/MoO3(8 nm)/Ag(18 nm)/Alq3(60 nm). The optical effect of the ultrathin LiF or PbO layer is ignored in our calculations because its thickness is much smaller than the wavelength of visible light. The thicknesses of LiF, PbO, and MoO3 were experimentally optimized to insure excellent electrical properties of the devices besides the optical optimization.

Fig. 2
Fig. 2

Comparison of the current density-luminance-voltage (J-L-V) characteristics of the devices with PbO EIL (0.5 nm), LiF EIL (1 nm), and without EIL

Fig. 3
Fig. 3

Current efficiency and power efficiency as a function of luminance for the ITOLED with 0.5 nm PbO EIL.

Fig. 4
Fig. 4

Current density-voltage (J-V) characteristics of electron-only devices with different EILs. The inset shows the structure of the electron-only devices.

Fig. 5
Fig. 5

Energy level diagram (a) without and (b) with the PbO EIL.

Fig. 6
Fig. 6

The absorption spectra of intrinsic Alq3 and Alq3:PbO films. Inset: XPS spectra of Alq3 film and Alq3:PbO film.

Fig. 7
Fig. 7

Fitting of the J-V data of the Al/Alq3(80 nm)/Al electron-only device to the thermionic emission model plotted as current density vs (electric field)1/2 in log-linear scale. Inset: Fitting the J-V data of the Al/PbO(0.5 nm)/Alq3(80 nm)/Al electron-only device.

Fig. 8
Fig. 8

(a) EL spectra of device with PbO EIL as a function of angle from the surface normal. EL spectrum (normalized) in normal direction of the BOLED with the same organic layer structure is also shown for comparison. (b) Angular distribution of radiation irradiance for the ITOLED and the Lambertian emission pattern (normalized to the 0° irradiance).

Tables (1)

Tables Icon

Table 1 Comparison of the EL performance of the devices with different thicknesses of PbO and the device with 1 nm thickness of LiF

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(λ,θ)=T2[1+R1+2R1cos(4πL1λϕ1)](1R1R2)2+4R1R2sin2(2πLλϕ1+ϕ22)I0,
4πL1/λϕ1=2nπ(n:  integer)
2πL/λ(ϕ1+ϕ2)/2=mπ(m:  integer) .
J=AT2exp(ϕBβRSFkBT),
L=inidicos(θi)

Metrics