Abstract

We compare the amplification of various modes in large mode area fibers when the pump is coupled into the fundamental core mode versus the standard cladding-pump scheme. Our simulations show that pumping in the LP01 core mode results in differential gain for the fundamental signal mode which suppresses the higher order modes and amplified spontaneous emission compared to the cladding pump scheme. This differential gain effect is predicted to increase with core size and may provide a path to scale fiber mode area to several thousand square micron.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber

Sheng Zhu, Shankar Pidishety, Yutong Feng, Soonki Hong, Jeff Demas, Raghuraman Sidharthan, Seongwoo Yoo, Siddharth Ramachandran, Balaji Srinivasan, and Johan Nilsson
Opt. Express 26(18) 23295-23304 (2018)

Pump absorption, laser amplification, and effective length in double-clad ytterbium-doped fibers with small area ratio

Yutong Feng, Pablo G. Rojas Hernández, Sheng Zhu, Ji Wang, Yujun Feng, Huaiqin Lin, Oscar Nilsson, Jiang sun, and Johan Nilsson
Opt. Express 27(19) 26821-26841 (2019)

Bendable large-mode-area fiber with a non-circular core

Junhua Ji, Huaiqin Lin, Raghuraman Sidharthan, Daryl Ho, Yanyan Zhou, Johan Nilsson, and Seongwoo Yoo
Appl. Opt. 57(22) 6388-6395 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-µJ pulses from a single-transverse-mode large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378–380 (1997).
    [Crossref] [PubMed]
  2. J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb+3-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22, 1092–1094 (1997).
    [Crossref] [PubMed]
  3. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
    [Crossref]
  4. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, “High-energy single-transverse-mode q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber,” Opt. Lett. 23, 1683–1685 (1998).
    [Crossref]
  5. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
    [Crossref]
  6. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715–2720 (2006).
    [Crossref] [PubMed]
  7. J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, paper CTuQ3
  8. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).
  9. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24, 1689–1697 (2007).
    [Crossref]
  10. L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline
  11. A. Galvanauskas, M. C. Swan, and C.-H. Liu, “Effectively-single-mode large core passive and active fibers with chirally-coupled-core structures,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, paper CMB1.
  12. J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
    [Crossref]
  13. J. C. Jasapara, A. DeSantolo, J. W. Nicholson, and Z. Várallyay, “Diffraction Limited Amplification of Fundamental Mode in Er Fiber with 1800 µm2 Effective Area,” Conference on Lasers and Electro-Optics 2009, Baltimore, MD paper CFM2
  14. J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core pumped large-mode area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007).
    [Crossref] [PubMed]
  15. J. C. Jasapara, M. J. Andrejco, J. W. Nicholson, A. D. Yablon, and Z. Várallyay, “Simultaneous direct amplification and compression of picosecond pulses to 65-kW peak power without pulse break-up in erbium fiber,” Opt. Express 15, 17494–17501 (2007).
    [Crossref] [PubMed]
  16. J. C. Jasapara, A. DeSantolo, J.W. Nicholson, A. D. Yablon, and Z. Várallyay, “Diffraction limited amplification of picosecond pulses in 1170 µm2 effective area erbium fiber,” Opt. Express 16, 18869–18874 (2008).
    [Crossref]
  17. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25, 247–254 (2008).
    [Crossref]
  18. C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [Crossref]
  19. J. D. Jackson, Classical ElectrodynamicsThird Edition, (John Wiley & Sons, New York, 1998) Chapter 8.
  20. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology, (Academic Press, San Diego, 1999) Chapter 5.
  21. J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Topics Quantum Electron. 15, 30–36 (2009).
    [Crossref]
  22. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007).
    [Crossref] [PubMed]
  23. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
    [Crossref] [PubMed]

2009 (2)

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Topics Quantum Electron. 15, 30–36 (2009).
[Crossref]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

2008 (3)

2007 (4)

2006 (2)

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715–2720 (2006).
[Crossref] [PubMed]

2000 (1)

1998 (2)

1997 (2)

1991 (1)

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[Crossref]

Andrejco, M. J.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core pumped large-mode area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, J. W. Nicholson, A. D. Yablon, and Z. Várallyay, “Simultaneous direct amplification and compression of picosecond pulses to 65-kW peak power without pulse break-up in erbium fiber,” Opt. Express 15, 17494–17501 (2007).
[Crossref] [PubMed]

J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, paper CTuQ3

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology, (Academic Press, San Diego, 1999) Chapter 5.

Broderick, N. G.

Caplen, J.

Caplen, J. E.

DeSantolo, A.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. C. Jasapara, A. DeSantolo, J.W. Nicholson, A. D. Yablon, and Z. Várallyay, “Diffraction limited amplification of picosecond pulses in 1170 µm2 effective area erbium fiber,” Opt. Express 16, 18869–18874 (2008).
[Crossref]

J. C. Jasapara, A. DeSantolo, J. W. Nicholson, and Z. Várallyay, “Diffraction Limited Amplification of Fundamental Mode in Er Fiber with 1800 µm2 Effective Area,” Conference on Lasers and Electro-Optics 2009, Baltimore, MD paper CFM2

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[Crossref]

DiGiovanni, D.

DiGiovanni, D. J.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, paper CTuQ3

DiMarcello, F. V.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

Dong, L.

Ermeneux, S.

Fermann, M.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

Fermann, M. E.

Fini, J. M.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

Fu, L.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

Galvanauskas, A.

A. Galvanauskas, M. C. Swan, and C.-H. Liu, “Effectively-single-mode large core passive and active fibers with chirally-coupled-core structures,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, paper CMB1.

Ghalmi, S.

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[Crossref]

Goldberg, L.

Hanna, D. C.

Headley, C.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core pumped large-mode area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007).
[Crossref] [PubMed]

J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, paper CTuQ3

Jackson, J. D.

J. D. Jackson, Classical ElectrodynamicsThird Edition, (John Wiley & Sons, New York, 1998) Chapter 8.

Jasapara, J.

Jasapara, J. C.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. C. Jasapara, A. DeSantolo, J.W. Nicholson, A. D. Yablon, and Z. Várallyay, “Diffraction limited amplification of picosecond pulses in 1170 µm2 effective area erbium fiber,” Opt. Express 16, 18869–18874 (2008).
[Crossref]

J. C. Jasapara, M. J. Andrejco, J. W. Nicholson, A. D. Yablon, and Z. Várallyay, “Simultaneous direct amplification and compression of picosecond pulses to 65-kW peak power without pulse break-up in erbium fiber,” Opt. Express 15, 17494–17501 (2007).
[Crossref] [PubMed]

J. C. Jasapara, A. DeSantolo, J. W. Nicholson, and Z. Várallyay, “Diffraction Limited Amplification of Fundamental Mode in Er Fiber with 1800 µm2 Effective Area,” Conference on Lasers and Electro-Optics 2009, Baltimore, MD paper CFM2

Jiang, Z.

Kliner, D. A. V.

Koplow, J. P.

Li, J.

L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24, 1689–1697 (2007).
[Crossref]

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

Limpert, J.

Liu, C.-H.

A. Galvanauskas, M. C. Swan, and C.-H. Liu, “Effectively-single-mode large core passive and active fibers with chirally-coupled-core structures,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, paper CMB1.

Marciante, J. R.

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Topics Quantum Electron. 15, 30–36 (2009).
[Crossref]

Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25, 247–254 (2008).
[Crossref]

Marcinkevicius, A.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

McKay, H.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

Monberg, E.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

Moore, M.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

Nicholson, J. W.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, J. W. Nicholson, A. D. Yablon, and Z. Várallyay, “Simultaneous direct amplification and compression of picosecond pulses to 65-kW peak power without pulse break-up in erbium fiber,” Opt. Express 15, 17494–17501 (2007).
[Crossref] [PubMed]

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core pumped large-mode area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

J. C. Jasapara, A. DeSantolo, J. W. Nicholson, and Z. Várallyay, “Diffraction Limited Amplification of Fundamental Mode in Er Fiber with 1800 µm2 Effective Area,” Conference on Lasers and Electro-Optics 2009, Baltimore, MD paper CFM2

Nicholson, J.W.

Nilsson, J.

Offerhaus, H. L.

Oh, J.

J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, paper CTuQ3

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology, (Academic Press, San Diego, 1999) Chapter 5.

Paschotta, R.

Peng, X.

Penty, R. V.

Ramachandran, S.

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

Richardson, D. J.

Röser, F.

Rothhardt, J.

Salin, F.

Sammut, R.

Schmidt, O.

Schreiber, T.

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology, (Academic Press, San Diego, 1999) Chapter 5.

Swan, M. C.

A. Galvanauskas, M. C. Swan, and C.-H. Liu, “Effectively-single-mode large core passive and active fibers with chirally-coupled-core structures,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, paper CMB1.

Taverner, D.

Thomas, B.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

Tünnermann, A.

Várallyay, Z.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. C. Jasapara, A. DeSantolo, J.W. Nicholson, A. D. Yablon, and Z. Várallyay, “Diffraction limited amplification of picosecond pulses in 1170 µm2 effective area erbium fiber,” Opt. Express 16, 18869–18874 (2008).
[Crossref]

J. C. Jasapara, M. J. Andrejco, J. W. Nicholson, A. D. Yablon, and Z. Várallyay, “Simultaneous direct amplification and compression of picosecond pulses to 65-kW peak power without pulse break-up in erbium fiber,” Opt. Express 15, 17494–17501 (2007).
[Crossref] [PubMed]

J. C. Jasapara, A. DeSantolo, J. W. Nicholson, and Z. Várallyay, “Diffraction Limited Amplification of Fundamental Mode in Er Fiber with 1800 µm2 Effective Area,” Conference on Lasers and Electro-Optics 2009, Baltimore, MD paper CFM2

Wielandy, S.

Williams, K.

Wisk, P.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

Yablon, A. D.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref] [PubMed]

J. C. Jasapara, A. DeSantolo, J.W. Nicholson, A. D. Yablon, and Z. Várallyay, “Diffraction limited amplification of picosecond pulses in 1170 µm2 effective area erbium fiber,” Opt. Express 16, 18869–18874 (2008).
[Crossref]

J. C. Jasapara, M. J. Andrejco, J. W. Nicholson, A. D. Yablon, and Z. Várallyay, “Simultaneous direct amplification and compression of picosecond pulses to 65-kW peak power without pulse break-up in erbium fiber,” Opt. Express 15, 17494–17501 (2007).
[Crossref] [PubMed]

J. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core pumped large-mode area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007).
[Crossref] [PubMed]

J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, paper CTuQ3

Yan, M. F.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Express 31, 1797–1799, (2006).

Yvernault, P.

IEEE J. Sel. Topics in Quantum Electron. (1)

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Várallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Topics in Quantum Electron. 15, 3–11 (2009).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Topics Quantum Electron. 15, 30–36 (2009).
[Crossref]

J. Lightwave Technol. (1)

C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (6)

Opt. Lett. (6)

Other (6)

J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, paper CTuQ3

J. D. Jackson, Classical ElectrodynamicsThird Edition, (John Wiley & Sons, New York, 1998) Chapter 8.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology, (Academic Press, San Diego, 1999) Chapter 5.

L. Dong, J. Li, H. McKay, A. Marcinkevicius, B. Thomas, M. Moore, L. Fu, and M. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 µm,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, postdeadline

A. Galvanauskas, M. C. Swan, and C.-H. Liu, “Effectively-single-mode large core passive and active fibers with chirally-coupled-core structures,” Conference on Lasers and Electro-Optics 2008, San Jose, CA, paper CMB1.

J. C. Jasapara, A. DeSantolo, J. W. Nicholson, and Z. Várallyay, “Diffraction Limited Amplification of Fundamental Mode in Er Fiber with 1800 µm2 Effective Area,” Conference on Lasers and Electro-Optics 2009, Baltimore, MD paper CFM2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Inversion level in the core at different propagation lengths z. The column at the left shows the n 2(r) distribution for core pump and the right-hand column shows the n 2(r) for cladding pump case. The first, second, and third rows are for the LP01, LP03, and LP06 modes respectively. Normalized intensity profile is also shown in the left column (thick, black, solid line) and the net modal gain (G tot) at the end of the amplifier (L=6 m) is written in the top right corner of the figures.
Fig. 2.
Fig. 2. Gain per unit length versus propagation distance for the cases when the pump is in the, (a) fundamental core mode, and (b) inner cladding. The fundamental mode has 21 dB higher power compared to each HOM at the fiber input.
Fig. 3.
Fig. 3. Total gain at the fiber output for various modes. Some even modes have been noted. The zero relative effective index is equal to the core index to which the fundamental mode is the closest. The cladding index is 0.0048 below the core index.
Fig. 4.
Fig. 4. Signal output power as a function of pump intensity for (a) core and (b) cladding pumps. Ratio of HOM and LP01 power as a function of total signal power for (c) core and (d) cladding pump.
Fig. 5.
Fig. 5. Fraction of power in LP11, LP02, and LP03 modes relative to the fundamental LP01 mode as a function of signal power measured using the S2-imaging technique.
Fig. 6.
Fig. 6. Gain and relative output power of propagating modes in (a) core, and (b) cladding, pump cases. LP06 mode is not supported by the fibers below A eff=1500 µm2.

Tables (2)

Tables Icon

Table 1. Parameters used in core and cladding pump modeling. Cladding pumped system differs in concentration and cladding diameter.

Tables Icon

Table 2. Total gain of twenty modes with gain competition using core and cladding pump schemes. The first 18 modes regularly follow each other in effective index from LP01. Results for two very high mode orders, LP05 and LP06, are also included.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dPmn(z)dz=[Gmn(z)α]Pmn(z),
Gmn(z)=σe02π0imn(r,ϕ)n2(r,ϕ,z)rdrdϕσa02π0imn(r,ϕ)n1(r,ϕ,z)rdrdϕ,
imn(r,ϕ)=Imn(r,ϕ,z)Pmn(z),
n2(r,ϕ,z)=nt(r,ϕ)m,nPmn(z)imn(r,ϕ)σahfmn1τ+m,nPmn(z)imn(r,ϕ)(σa+σe)hfmn,

Metrics