Abstract

We numerically investigate the optical field enhancement supported by gap surface plasmon polaritons (GSPPs). The optical field enhancement at the edge of the nanostructures originates not only from localized surface plasmon (LSP) resonance but also from multiple scattering and coupling of GSPPs in the spacer region between two metal plates. By calculating field enhancement, we predict surface-enhanced Raman scattering (SERS) enhancement factors (EFs) of up to 1011 for equilateral triangular nanostructures. The SERS EFs as a function of the geometry and dimension of the nanostructures are obtained by simulation. The effect of the surrounding medium on the SERS EFs is also investigated. Coupled with easy fabrication, those nanostructures are expected to find important applications in optical sensing as a SERS-active substrate.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  2. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  3. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  4. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
    [CrossRef] [PubMed]
  5. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
    [CrossRef]
  6. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031903 (2005).
    [CrossRef]
  7. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
    [CrossRef]
  8. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004).
    [CrossRef]
  9. G. Gantzounis, N. Stefanou, and N. Papanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77(3), 035101–035107 (2008).
    [CrossRef]
  10. J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
    [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
    [CrossRef] [PubMed]
  12. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401–035408 (2009).
    [CrossRef]
  13. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [CrossRef] [PubMed]
  14. S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
    [CrossRef]
  15. L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett. 92(9), 093113–093113 (2008).
    [CrossRef]
  16. J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. 92(13), 131115–131113 (2008).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  18. P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
    [CrossRef]
  19. E. C. L. Ru, and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects (Elsevier, Oxford, 2009).
  20. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering Physics and Applications (Springer, New York, 2006).
  21. G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
    [CrossRef] [PubMed]
  22. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [CrossRef]
  23. C. L. Haynes and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
    [CrossRef]
  24. M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
    [CrossRef] [PubMed]

2009 (2)

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401–035408 (2009).
[CrossRef]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

2008 (7)

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
[CrossRef] [PubMed]

J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

G. Gantzounis, N. Stefanou, and N. Papanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77(3), 035101–035107 (2008).
[CrossRef]

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett. 92(9), 093113–093113 (2008).
[CrossRef]

J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. 92(13), 131115–131113 (2008).
[CrossRef]

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef]

2007 (1)

2006 (2)

M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
[CrossRef] [PubMed]

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

2005 (1)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031903 (2005).
[CrossRef]

2004 (2)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004).
[CrossRef]

2003 (3)

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[CrossRef]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1977 (1)

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
[CrossRef]

Beermann, J.

Biener, J.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

Chaney, S. B.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031903 (2005).
[CrossRef]

Chen, M. W.

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett. 92(9), 093113–093113 (2008).
[CrossRef]

Chu, Y.

Crozier, K. B.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Della Valle, G.

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef]

Ding, B.

J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. 92(13), 131115–131113 (2008).
[CrossRef]

Dluhy, R. A.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031903 (2005).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Fang, J.

J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. 92(13), 131115–131113 (2008).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Futamata, M.

M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
[CrossRef] [PubMed]

Gantzounis, G.

G. Gantzounis, N. Stefanou, and N. Papanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77(3), 035101–035107 (2008).
[CrossRef]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004).
[CrossRef]

Goldberger, J.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Hamza, A. V.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hayes, J. R.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[CrossRef]

He, R.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Hess, C.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Huser, T.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

Inoue, A.

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett. 92(9), 093113–093113 (2008).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401–035408 (2009).
[CrossRef]

Kall, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Kim, F.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kucheyev, S. O.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nie, S. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

Novikov, S. M.

Papanikolaou, N.

G. Gantzounis, N. Stefanou, and N. Papanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77(3), 035101–035107 (2008).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Qian, L. H.

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett. 92(9), 093113–093113 (2008).
[CrossRef]

Qian, X. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004).
[CrossRef]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef]

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004).
[CrossRef]

Shanmukh, S.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031903 (2005).
[CrossRef]

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401–035408 (2009).
[CrossRef]

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16(10), 6867–6876 (2008).
[CrossRef] [PubMed]

Søndergaard, T.

Song, X.

J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. 92(13), 131115–131113 (2008).
[CrossRef]

Stefanou, N.

G. Gantzounis, N. Stefanou, and N. Papanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77(3), 035101–035107 (2008).
[CrossRef]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef]

Sun, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Talley, C. E.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

Tao, A.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Tien, P. K.

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
[CrossRef]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004).
[CrossRef]

Xia, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Yang, P.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Yi, Y.

J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. 92(13), 131115–131113 (2008).
[CrossRef]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Zhao, Y. P.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031903 (2005).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908–031903 (2005).
[CrossRef]

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102–053103 (2006).
[CrossRef]

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett. 92(9), 093113–093113 (2008).
[CrossRef]

J. Fang, Y. Yi, B. Ding, and X. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern,” Appl. Phys. Lett. 92(13), 131115–131113 (2008).
[CrossRef]

Chem. Soc. Rev. (1)

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[CrossRef] [PubMed]

Faraday Discuss. (1)

M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[CrossRef]

Nano Lett. (2)

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett. 4(1), 153–158 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401–035408 (2009).
[CrossRef]

G. Gantzounis, N. Stefanou, and N. Papanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77(3), 035101–035107 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49(2), 361–420 (1977).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Other (3)

E. C. L. Ru, and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects (Elsevier, Oxford, 2009).

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering Physics and Applications (Springer, New York, 2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic of the proposed nanostructures.

Fig. 2
Fig. 2

Calculated effective refractive index Re(neff), neff = kgsp/k0, and GSP propagation length Lgsp = (2Im(kgsp))−1, as a function of the SiO2 spacer thickness. The incident wavelengths are 785 nm in (a) and 633 nm in (b).

Fig. 3
Fig. 3

Intensity distribution of the triangular ((a) and (b)), square ((c) and (d)), and circular ((e) and (f)) nanostructures in xy plane. (a), (c) and (e) corresponds to the intensity distribution at the bottom region of the nanostructures (indicated by the red line in (a)) and (b), (d), and (f) corresponds to the intensity distribution at the top region of the nanostructures (indicated by the red line in (b)). The incident wavelength is 785 nm.

Fig. 4
Fig. 4

Comparison of SERS EFs for different incident wavelengths and nanostructure dimensions. The incident wavelength is 785 nm in (a) and (b), and 633 nm in (c) and (d). (a) and (c) show the EFs at the bottom region of the nanostructures and (b) and (d) show the EFs at the top region of the nanostructures.

Fig. 5
Fig. 5

Comparison of SERS EFs at the bottom and the top region of the nanostructures and the real parts of the neff as a function of the spacer thickness. The incident wavelengths are 785 nm in (a) and 633 nm in (b). The simulated structure is the equilateral triangular nanostructure with a resonant length of 110 nm for 785 nm incident wavelength and 100 nm for 633 nm incident wavelength, respectively.

Fig. 6
Fig. 6

Comparison of SERS EFs of equilateral triangular nanostructures in water as a function of the length (L) of the nanostructures. The incident wavelengths are 785 nm in (a) and 633 nm in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tanh(kgsp2εdk02t/2)=εdkgsp2εmk02εmkgsp2εdk02

Metrics