Abstract

We report intense green photoluminescence (PL) from vertically aligned indium gallium nitride (InxGa1- xN) nanorod arrays. The formation of InxGa1- xN/GaN-heterostructure nanorods increases the localization depth of the radially confined carriers (> 100 meV). Temperature dependent PL peak energy of InGaN nanorods shows the characteristic S-shaped behavior, indicating the prominent carrier trapping in band-tail states associated with the nonuniformity of In content. Time-resolved PL (TRPL) response decays biexponentially and the dominant slow decay component of TRPL for InxGa1- xN nanorods is due to the transfer of excitons to the localized states before the radiative decay.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
    [CrossRef] [PubMed]
  2. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
    [CrossRef]
  3. S. Nakamura, and G. Fasol, The Blue Laser Diode (Springer, New York, 1997).
  4. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
    [CrossRef]
  5. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
    [CrossRef]
  6. Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
    [CrossRef]
  7. H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
    [CrossRef]
  8. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
    [CrossRef]
  9. Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
    [CrossRef]
  10. H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 89(24), 243105 (2006).
    [CrossRef]
  11. H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
    [CrossRef]
  12. H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008).
    [CrossRef] [PubMed]
  13. S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
    [CrossRef]
  14. A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
    [CrossRef] [PubMed]
  15. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
    [CrossRef]
  16. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
    [CrossRef]
  17. H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
    [CrossRef]
  18. S. Nakamura, and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor & Francis, 2000), Chap. 5.
  19. R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1-xAs multilayer structures,” Phys. Rev. B 22(2), 863–871 (1980).
    [CrossRef]
  20. R. J. Archer, “Materials for light emitting diodes,” J. Electron. Mater. 1(1), 127–153 (1972).
    [CrossRef]
  21. Y. Narukawa, Y. Kawakami, and S. Fujita, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59(15), 10283–10288 (1999).
    [CrossRef]

2009 (1)

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

2008 (1)

2007 (1)

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

2006 (3)

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 89(24), 243105 (2006).
[CrossRef]

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

2004 (3)

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
[CrossRef]

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

2000 (1)

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

1999 (1)

Y. Narukawa, Y. Kawakami, and S. Fujita, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59(15), 10283–10288 (1999).
[CrossRef]

1998 (1)

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

1997 (2)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
[CrossRef]

1995 (1)

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

1991 (1)

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

1980 (1)

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1-xAs multilayer structures,” Phys. Rev. B 22(2), 863–871 (1980).
[CrossRef]

1972 (1)

R. J. Archer, “Materials for light emitting diodes,” J. Electron. Mater. 1(1), 127–153 (1972).
[CrossRef]

Archer, R. J.

R. J. Archer, “Materials for light emitting diodes,” J. Electron. Mater. 1(1), 127–153 (1972).
[CrossRef]

Ashcroft, N. W.

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

Bour, D. P.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

Calle, F.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Calleja, E.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Chang, H.-S.

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

Chang, W.-H.

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Chen, C.-D.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Chen, C.-Y.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Chen, H.-S.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Chen, H.-Y.

H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008).
[CrossRef] [PubMed]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 89(24), 243105 (2006).
[CrossRef]

Chen, J.-S.

Chen, W.-C.

Chen, W.-Y.

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

Chiu, C. H.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Cho, Y. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Cho, Y.-H.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Chu, J. T.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Chuang, T.-F.

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

Chung, K. S.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

DenBaars, S. P.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Denton, A. R.

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

Eliseev, P. G.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

Fischer, A. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Fu, D. J.

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
[CrossRef]

Fujita, N.

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
[CrossRef]

Fujita, S.

Y. Narukawa, Y. Kawakami, and S. Fujita, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59(15), 10283–10288 (1999).
[CrossRef]

Funato, M.

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

Gainer, G. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Gossard, A. C.

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1-xAs multilayer structures,” Phys. Rev. B 22(2), 863–871 (1980).
[CrossRef]

Gwo, S.

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008).
[CrossRef] [PubMed]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 89(24), 243105 (2006).
[CrossRef]

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Hsu, J.-T.

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Hsu, T. M.

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Hsu, T.-M.

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

Hsueh, T. H.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Huang, C.-F.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Huang, H. W.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Jahn, U.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Kaneta, A.

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

Kang, T. W.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
[CrossRef]

Kao, C. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Kawakami, Y.

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

Y. Narukawa, Y. Kawakami, and S. Fujita, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59(15), 10283–10288 (1999).
[CrossRef]

Keller, S.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Kikuchi, A.

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
[CrossRef]

Kim, D. Y.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Kim, H.-M.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Kim, S. I.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Kishino, K.

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
[CrossRef]

Kleinman, D. A.

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1-xAs multilayer structures,” Phys. Rev. B 22(2), 863–871 (1980).
[CrossRef]

Kuo, H. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Lai, C. F.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Lee, H.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Lee, J.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

Lin, C. F.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Lin, H.-W.

H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008).
[CrossRef] [PubMed]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 89(24), 243105 (2006).
[CrossRef]

Lu, T. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Lu, Y.-C.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Miller, R. C.

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1-xAs multilayer structures,” Phys. Rev. B 22(2), 863–871 (1980).
[CrossRef]

Mishra, U. K.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Mohammad, S. N.

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

Mori, M.

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
[CrossRef]

Morkoç, H.

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

Muñoz, E.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Naranjo, F. B.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Narukawa, Y.

Y. Narukawa, Y. Kawakami, and S. Fujita, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59(15), 10283–10288 (1999).
[CrossRef]

Nordland, W. A.

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1-xAs multilayer structures,” Phys. Rev. B 22(2), 863–871 (1980).
[CrossRef]

Oh, J. E.

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
[CrossRef]

Osinski, M.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

Park, C. M.

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
[CrossRef]

Park, Y. S.

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
[CrossRef]

Perlin, P.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

Ploog, K.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Ponce, F. A.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

Ryu, S. R.

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Sakai, S.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

Sánchez, F. J.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Sánchez-García, M. A.

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Shen, C.-H.

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 89(24), 243105 (2006).
[CrossRef]

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Song, J. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Sugahara, T.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

Suzuki, S.

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

Tang, T.-Y.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Wang, J.-S.

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Wang, S. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Wu, C.-L.

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Wu, C.-S.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Wu, C.-Y.

Yang, C. C.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Yeh, D.-M.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Yoshizawa, M.

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
[CrossRef]

Yu, C. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino, “Origin of high oscillator strength in green-emitting InGaN/GaN nanocolumns,” Appl. Phys. Lett. 89(16), 163124 (2006).
[CrossRef]

H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 89(24), 243105 (2006).
[CrossRef]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718 (2004).
[CrossRef]

S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature,” Appl. Phys. Lett. 84(19), 3765 (2004).
[CrossRef]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370 (1998).
[CrossRef]

Appl. Phys. Lett. J. Electron. Mater. (1)

P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569 (1997).P. G. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[CrossRef]

J. Electron. Mater. (1)

R. J. Archer, “Materials for light emitting diodes,” J. Electron. Mater. 1(1), 127–153 (1972).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997).
[CrossRef]

Nano Lett. (1)

H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Nanotechnology (2)

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Nature (1)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (3)

E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Y. Narukawa, Y. Kawakami, and S. Fujita, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59(15), 10283–10288 (1999).
[CrossRef]

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1-xAs multilayer structures,” Phys. Rev. B 22(2), 863–871 (1980).
[CrossRef]

Science (1)

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

Solid State Commun. (1)

H.-S. Chang, T.-M. Hsu, T.-F. Chuang, W.-Y. Chen, S. Gwo, and C.-H. Shen, “Localized states in InxGa1-xN epitaxial film,” Solid State Commun. 149(1-2), 18–20 (2009).
[CrossRef]

Other (2)

S. Nakamura, and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor & Francis, 2000), Chap. 5.

S. Nakamura, and G. Fasol, The Blue Laser Diode (Springer, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

FE-SEM images of top- (a) and side-view (b) of InGaN/GaN nanorods. The coalesced nanorod bundles composed of three to four nanorods can be observed. (c) A photograph of room-temperature PL from InGaN/GaN nanorods taken with a green color filter. (d) Layer structure of InGaN/GaN-heterostructure nanorods grown on top of a Si(111) substrate.

Fig. 2
Fig. 2

Normalized PL spectra of the InGaN film and nanorods. The PL intensity of the InGaN film is about 15 times smaller than that of the InGaN nanorods.

Fig. 3
Fig. 3

Temperature-dependent PL spectra (a) and the PL peak energy (b) of InGaN/GaN nanorods. The temperature dependence of PL peak position shows a characteristic blueshift at low temperature range. The dashed line was obtained by Eq. (1) in the text.

Fig. 4
Fig. 4

(a) TRPL responses at different sample temperatures. (b) Fast and slow decay time constants are shown with the PL spectra. The solid lines are obtained by using Eq. (2).

Fig. 5
Fig. 5

(a) Intensity variation of the PL intensity as a function of reciprocal temperature for InGaN nanorods. The activation energy is about 30 meV and the deduced internal quantum efficiency can reach 6.3%. (b) PL lifetime τPL of InGaN nanorods with τrad and τnon-rad as a function of T.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

hν0=E0(T)σ2/kBT
τ1 , 2(E)=τrad1+exp[(EEme)/Eloc] ,
τrad(T)=τPL(T)η(T),   τnonrad(T)=τPL(T)1η(T) .

Metrics