Abstract

An optical orthogonal frequency division multiplexing (OFDM) scheme with Fourier transform in optical domain using time lenses both at the transmitter and at the receiver is analyzed. The comparison of performance between this scheme with the optical OFDM scheme that utilizes fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) in electrical domain is made. The nonlinear effects induced by Mach-Zehnder modulator (MZM) as well as by the fiber are investigated for both schemes. Results show that the coherent OFDM using time lenses has almost the same performance as that using FFT when the electrical driving message signal voltages are low so that MZM operates in the linear region. The nonlinearity of MZM deteriorates the conventional coherent OFDM based on FFT when the power of electrical driving signal increases significantly, but only has negligible impairment on the coherent OFDM using time lenses. Details of the time lens set up are provided and a novel scheme to implement the time lens without requiring the quadratic dependence of the driving voltage is presented.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
    [CrossRef] [PubMed]
  2. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
    [CrossRef]
  3. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
    [CrossRef]
  4. S. L. Jansen, I. Morita, T. C. Schenk, D. van den Borne, and H. Tanaka, “Optical OFDM–a candidate for future long-haul optical transmission systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMU3
  5. K. Lee, C. T. D. Thai, and J. K. Rhee, “All optical discrete Fourier transform processor for 100 Gbps OFDM transmission,” Opt. Express 16(6), 4023–4028 (2008).
    [CrossRef] [PubMed]
  6. S. Kumar and D. Yang, “Optical implementation of orthogonal frequency-division multiplexing using time lenses,” Opt. Lett. 33(17), 2002–2004 (2008).
    [CrossRef] [PubMed]
  7. D. Yang, and S. Kumar, “Realization of optical OFDM using time lenses and its comparison with conventional OFDM for fiber-optic systems,” in Proceedings of European Conference on Optical Communication (ECOC) (Vienna, 2009) (to be published).
  8. A. W. Lohmann and D. Mendlovic, “Temporal filtering with time lenses,” Appl. Opt. 31(29), 6212–6219 (1992).
    [CrossRef] [PubMed]
  9. T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” J. Lightwave Technol. 24(7), 2530–2540 (2006).
    [CrossRef]
  10. A. J. Lowery, “Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation,” IEEE Photon. Technol. Lett. 19(19), 1556–1558 (2007).
    [CrossRef]
  11. L. B. Du, and A. J. Lowery, “Fiber nonlinearity compensation for co-OFDM systems with periodic dispersion maps,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuO1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OTuO1 .
  12. W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15(16), 9936–9947 (2007).
    [CrossRef] [PubMed]
  13. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
    [CrossRef] [PubMed]
  14. A. J. Lowery, S. Wang, and M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express 15(20), 13282–13287 (2007).
    [CrossRef] [PubMed]
  15. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express 16(20), 15777–15810 (2008).
    [CrossRef] [PubMed]
  16. S. L. Jansen, I. Morita, K. Forozesh, S. Randel, D. Van den Borne, and H. Tanaka, “Optical OFDM, a hype or is it for real?” in proceedings of European Conference on Optical Communication (ECOC) (Brussels, 2008), pp. 49–52.
  17. B. S. Krongold, Y. Tang, and W. Shieh, “Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM system via active constellation extension,” in proceedings of European Conference on Optical Communication (ECOC) (Brussels, 2008), pp. 157–158.
  18. S. Hellerbrand, B. Goebel, and N. Hanik, “Trellis shaping for reduction of the peak-to-average power ratio in coherent optical OFDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JThA48. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-JThA48
  19. L. Du, and A. J. Lowery, “Improving nonlinearity precompensation in direct-detection optical OFDM communications systems,” in proceedings of European Conference on Optical Communication (ECOC) (Brussels, 2008), pp. 147–148.
  20. Y. Benlachtar, G. Gavioli, V. Mikhailov, and R. I. Killey, “Experimental investigation of SPM in long-haul direct-detection OFDM systems,” Opt. Express 16(20), 15477–15482 (2008).
    [CrossRef] [PubMed]
  21. Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19(7), 483–485 (2007).
    [CrossRef]
  22. Y. Tang, K. P. Ho, and W. Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20(11), 954–956 (2008).
    [CrossRef]
  23. J. Leibrich, A. Ali, and W. Rosenkranz, “OFDM transceiver design for optimizing sensitivity and long-haul performance,” IEEE/LEOS Summer Topical Meetings, 2008 Digest of the, pp. 249–250.
  24. A. Ali, J. Leibrich, and W. Rosenkranz, “Spectral efficiency and receiver sensitivity in direct detection optical-OFDM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMT7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OMT7
  25. J. Conradi, Bandwidth-Efficient Modulation Formats for Digital Fiber Transmission Systems (Academic Press, 2002), Chap. 16.
  26. D. Yang, S. Kumar, and H. Wang, “Temporal filtering using time lenses for optical transmission systems,” Opt. Commun. 281(2), 238–247 (2008).
    [CrossRef]
  27. S. Kumar, “Compensation of third-order dispersion using time reversal in optical transmission systems,” Opt. Lett. 32(4), 346–348 (2007).
    [CrossRef] [PubMed]
  28. H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29(7), 2189–2197 (1993).
    [CrossRef]

2008 (6)

2007 (7)

2006 (3)

1993 (1)

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29(7), 2189–2197 (1993).
[CrossRef]

1992 (1)

Armstrong, J.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[CrossRef]

Benlachtar, Y.

Cho, P.

Djordjevic, I. B.

Du, L. B.

Evans, R.

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19(7), 483–485 (2007).
[CrossRef]

Gavioli, G.

Hirooka, T.

Ho, K. P.

Y. Tang, K. P. Ho, and W. Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20(11), 954–956 (2008).
[CrossRef]

Karagodsky, V.

Khurgin, J.

Killey, R. I.

Kubota, H.

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29(7), 2189–2197 (1993).
[CrossRef]

Kumar, S.

Lee, K.

Lohmann, A. W.

Lowery, A. J.

Ma, Y.

Meiman, Y.

Mendlovic, D.

Mikhailov, V.

Nakazawa, M.

T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” J. Lightwave Technol. 24(7), 2530–2540 (2006).
[CrossRef]

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29(7), 2189–2197 (1993).
[CrossRef]

Nazarathy, M.

Noe, R.

Premaratne, M.

Rhee, J. K.

Shieh, W.

Y. Tang, K. P. Ho, and W. Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20(11), 954–956 (2008).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15(16), 9936–9947 (2007).
[CrossRef] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19(7), 483–485 (2007).
[CrossRef]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[CrossRef]

Shpantzer, I.

Tang, Y.

Y. Tang, K. P. Ho, and W. Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20(11), 954–956 (2008).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15(16), 9936–9947 (2007).
[CrossRef] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19(7), 483–485 (2007).
[CrossRef]

Thai, C. T. D.

Vasic, B.

Wang, H.

D. Yang, S. Kumar, and H. Wang, “Temporal filtering using time lenses for optical transmission systems,” Opt. Commun. 281(2), 238–247 (2008).
[CrossRef]

Wang, S.

Weidenfeld, R.

Yang, D.

S. Kumar and D. Yang, “Optical implementation of orthogonal frequency-division multiplexing using time lenses,” Opt. Lett. 33(17), 2002–2004 (2008).
[CrossRef] [PubMed]

D. Yang, S. Kumar, and H. Wang, “Temporal filtering using time lenses for optical transmission systems,” Opt. Commun. 281(2), 238–247 (2008).
[CrossRef]

Yi, X.

W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15(16), 9936–9947 (2007).
[CrossRef] [PubMed]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19(7), 483–485 (2007).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29(7), 2189–2197 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. J. Lowery, “Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation,” IEEE Photon. Technol. Lett. 19(19), 1556–1558 (2007).
[CrossRef]

Y. Tang, W. Shieh, X. Yi, and R. Evans, “Optimum design for RF-to-optical up-converter in coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19(7), 483–485 (2007).
[CrossRef]

Y. Tang, K. P. Ho, and W. Shieh, “Coherent optical OFDM transmitter design employing predistortion,” IEEE Photon. Technol. Lett. 20(11), 954–956 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

D. Yang, S. Kumar, and H. Wang, “Temporal filtering using time lenses for optical transmission systems,” Opt. Commun. 281(2), 238–247 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Other (10)

D. Yang, and S. Kumar, “Realization of optical OFDM using time lenses and its comparison with conventional OFDM for fiber-optic systems,” in Proceedings of European Conference on Optical Communication (ECOC) (Vienna, 2009) (to be published).

S. L. Jansen, I. Morita, T. C. Schenk, D. van den Borne, and H. Tanaka, “Optical OFDM–a candidate for future long-haul optical transmission systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMU3

J. Leibrich, A. Ali, and W. Rosenkranz, “OFDM transceiver design for optimizing sensitivity and long-haul performance,” IEEE/LEOS Summer Topical Meetings, 2008 Digest of the, pp. 249–250.

A. Ali, J. Leibrich, and W. Rosenkranz, “Spectral efficiency and receiver sensitivity in direct detection optical-OFDM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMT7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OMT7

J. Conradi, Bandwidth-Efficient Modulation Formats for Digital Fiber Transmission Systems (Academic Press, 2002), Chap. 16.

L. B. Du, and A. J. Lowery, “Fiber nonlinearity compensation for co-OFDM systems with periodic dispersion maps,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuO1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OTuO1 .

S. L. Jansen, I. Morita, K. Forozesh, S. Randel, D. Van den Borne, and H. Tanaka, “Optical OFDM, a hype or is it for real?” in proceedings of European Conference on Optical Communication (ECOC) (Brussels, 2008), pp. 49–52.

B. S. Krongold, Y. Tang, and W. Shieh, “Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM system via active constellation extension,” in proceedings of European Conference on Optical Communication (ECOC) (Brussels, 2008), pp. 157–158.

S. Hellerbrand, B. Goebel, and N. Hanik, “Trellis shaping for reduction of the peak-to-average power ratio in coherent optical OFDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JThA48. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-JThA48

L. Du, and A. J. Lowery, “Improving nonlinearity precompensation in direct-detection optical OFDM communications systems,” in proceedings of European Conference on Optical Communication (ECOC) (Brussels, 2008), pp. 147–148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of a coherent optical OFDM system using time lenses. MZM = Mach-Zehnder modulator, ETDM = electrical time division multiplexer. I and Q denote in-phase and quadrature components, respectively.

Fig. 2
Fig. 2

Fourier transform using the time lens. AWG = Arbitrary waveform generator, SSMF = Standard single-mode fiber.

Fig. 3
Fig. 3

The driving voltage varying as time for the phase modulator in a time-lens-based system.

Fig. 4
Fig. 4

BER v.s. launch power for coherent OFDM at Pm=0.12 mW.

Fig. 5
Fig. 5

(a) Normalized in-phase input mI(t) , and (b) the corresponding output of the coherent detector.

Fig. 6
Fig. 6

(a) Spectrum of the FFT-based OFDM signal, and (b) spectrum of the time-lens-based OFDM signal.

Fig. 7
Fig. 7

Nonlinear impairments induced by MZM for coherent OFDM. (a) γ=0 , (b) γ=1.1099 km1·W1 , Pin = −10 dBm.

Fig. 8
Fig. 8

BER v.s. launch power for coherent OFDM at Pm=500 mW.

Tables (2)

Tables Icon

Table 1 OFDM parameters

Tables Icon

Table 2 Transmission link parameters

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

uMZMI(t)=Accos [π2Vπ(mI(t)Vbias)],
uMZMQ(t)=iAccos [π2Vπ(mQ(t)Vbias)],
uMZMI(t)=Acπ2VπmI(t),
uMZMQ(t)=iAcπ2VπmQ(t).
uin(t)=Acπm(t)22Vπ,
m(t)=mI(t)+imQ(t).
Pc=|Ac|2,Pm=<mI2(t)>=<mQ2(t)>,Pin=<|uouttxFT(t)|2>=PcPmπ24Vπ2,
u˜in(f)=[uin(t);tf]=uin(t)exp(i2πft)dt,
uin(t)=1[u˜in(f);ft]=u˜in(f)exp(i2πft)df.
h(t)=exp(iV(t)πVπ),
C=12S1.
uouttxFT(t)=[uin(t);tt/(2πS1)]=1i2π|S1|u˜in(t2πS1).
uoutrxFT(t)=[uoutfiber(t);tt/(2πS1)]=1i2π|S1|u˜outfiber(t2πS1).
HF(f)=exp[iϕ(f)L],
ϕ(f)=β2(2πf)2/2+β3(2πf)3/6+β4(2πf)4/24+,
uoutfiber(t)=uouttxFT(t)hF(t),
uoutrxFT(t)=1i2π|S1|[uouttxFT(t);tt/(2πS1)]                ×[hF(t);tt/(2πS1)].
uoutrxFT(t)=iuin(t)×exp{iLϕ[t/(2πS1)]}.
fs=nscΔfs
TFT=1Δfs.
h(t)=n=+h0(tnTFT),
h0(t)=exp(iV(t)πVπ),
V(t)=V0t2  for |t|TFT/2,        = 0      otherwise .
uin(t)=n=+un(tnTFT),
un(t)=mn(t) for |t|TFT/2,        = 0       otherwise,  
u˜outtxFT(f)un(t),
t=2πS1f.
Δts=2π|S1|Δfs.
|S1|=TFT2πfs.
Δts=1fs.
V0πVπ(TFT2)2=π4nsc,
exp(ix)=exp[i(x+n2π)], n=0,±1,±2,  .

Metrics