Abstract

We report experimental demonstration of fast light in an over-coupled ultra-compact silicon ring resonator with resonance-splitting. Strong mutual-coupling induced by the grating inside the ring leads to split resonances and accompanying large anomalous dispersion, thus providing a new approach to realizing fast light in the over-coupled region of the ring resonator. In the experiment, a maximum pulse advancement of 130 ps with low distortion is achieved for a 1-ns signal pulse in a 10-μm-radius silicon ring resonator. The observed pulse advancement agrees well with the theoretical calculation based on coupled mode theory.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).
    [CrossRef]
  2. E. Parra and J. R. Lowell, "Toward applications of slow light technology," Opt. Photonics News 18, 40-45 (2007).
    [CrossRef]
  3. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
    [CrossRef] [PubMed]
  4. A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
    [CrossRef] [PubMed]
  5. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
    [CrossRef] [PubMed]
  6. R. Y. Chiao and P. W. Milonni, "Fast Light, Slow Light," Opt. Photonics News 13, 26-30 (2002),
    [CrossRef]
  7. K. Y. Song, M. González Herráez, and L. Thévenaz, "Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers," Opt. Express 13, 9758-9765 (2005).
    [CrossRef] [PubMed]
  8. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
    [CrossRef]
  9. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
    [CrossRef]
  10. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q. Park, and D. J. Gauthier, "Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier," Opt. Lett. 32, 906-908 (2007).
    [CrossRef] [PubMed]
  11. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  12. H. Su and S. L. Chuang, "Room temperature slow and fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061102 (2006).
    [CrossRef]
  13. B. Pesala, F. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, "Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers," Opt. Express 15, 15863-15867 (2007).
    [CrossRef] [PubMed]
  14. B. Pesala, Z. Chen, A. V. Uskov, and C. Chang-Hasnain, "Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers," Opt. Express 14, 12968-12975 (2006).
    [CrossRef] [PubMed]
  15. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
    [CrossRef] [PubMed]
  16. Md. A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonant absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
    [CrossRef] [PubMed]
  17. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
    [CrossRef] [PubMed]
  18. K. Totsuka and M. Tomita, "Slow and fast light in a microsphere-optical fiber system," J. Opt. Soc. Am. B 23, 2194-2199 (2006).
    [CrossRef]
  19. K. Totsuka and M. Tomita, "Observation of fast light in Mie scattering processes," Phys. Rev. E 73, 045602(R) (2006).
  20. G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
    [CrossRef] [PubMed]
  21. B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
    [CrossRef]
  22. F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
    [CrossRef]
  23. J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005).
    [CrossRef]
  24. J. E. Heebner and R. W. Boyd, "‘Slow’ and ‘fast’ light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002).
    [CrossRef]
  25. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, "Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling," Opt. Express 16, 4621-4630 (2008).
    [CrossRef] [PubMed]
  26. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  27. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
    [CrossRef]
  28. D. D. Smith and H. Chang, "Coherence phenomena in coupled optical resonators," J. Mod. Opt. 51, 2503-2513 (2004).
  29. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, "Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides," Opt. Express 15, 9625-9630 (2007).
    [CrossRef] [PubMed]
  30. F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
    [CrossRef]

2008 (2)

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
[CrossRef]

Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, "Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling," Opt. Express 16, 4621-4630 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (7)

H. Su and S. L. Chuang, "Room temperature slow and fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).
[CrossRef]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef]

K. Totsuka and M. Tomita, "Slow and fast light in a microsphere-optical fiber system," J. Opt. Soc. Am. B 23, 2194-2199 (2006).
[CrossRef]

B. Pesala, Z. Chen, A. V. Uskov, and C. Chang-Hasnain, "Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers," Opt. Express 14, 12968-12975 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Y. Song, M. González Herráez, and L. Thévenaz, "Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers," Opt. Express 13, 9758-9765 (2005).
[CrossRef] [PubMed]

J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005).
[CrossRef]

2004 (2)

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

D. D. Smith and H. Chang, "Coherence phenomena in coupled optical resonators," J. Mod. Opt. 51, 2503-2513 (2004).

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

2002 (2)

R. Y. Chiao and P. W. Milonni, "Fast Light, Slow Light," Opt. Photonics News 13, 26-30 (2002),
[CrossRef]

J. E. Heebner and R. W. Boyd, "‘Slow’ and ‘fast’ light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002).
[CrossRef]

2001 (2)

A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
[CrossRef] [PubMed]

Md. A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonant absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

2000 (2)

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Baets, R.

Barsi, C.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef]

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q. Park, and D. J. Gauthier, "Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier," Opt. Lett. 32, 906-908 (2007).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).
[CrossRef]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

J. E. Heebner and R. W. Boyd, "‘Slow’ and ‘fast’ light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002).
[CrossRef]

Chang, H.

D. D. Smith and H. Chang, "Coherence phenomena in coupled optical resonators," J. Mod. Opt. 51, 2503-2513 (2004).

Chang, H. J.

Chang-Hasnain, C.

Chen, Z.

Chiao, R. Y.

R. Y. Chiao and P. W. Milonni, "Fast Light, Slow Light," Opt. Photonics News 13, 26-30 (2002),
[CrossRef]

A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
[CrossRef] [PubMed]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Chuang, S. L.

H. Su and S. L. Chuang, "Room temperature slow and fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Dainese, M.

Dogariu, A.

A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).
[CrossRef]

Gauthier, D. J.

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q. Park, and D. J. Gauthier, "Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier," Opt. Lett. 32, 906-908 (2007).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).
[CrossRef]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

Gehring, G.

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef]

González Herráez, M.

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Heebner, J. E.

J. E. Heebner and R. W. Boyd, "‘Slow’ and ‘fast’ light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002).
[CrossRef]

Jalali, B.

B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
[CrossRef]

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Kostinski, N.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef]

Kuzmich, A.

A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Li, Q.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
[CrossRef]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Liu, F.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
[CrossRef]

Lowell, J. R.

E. Parra and J. R. Lowell, "Toward applications of slow light technology," Opt. Photonics News 18, 40-45 (2007).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Milonni, P. W.

R. Y. Chiao and P. W. Milonni, "Fast Light, Slow Light," Opt. Photonics News 13, 26-30 (2002),
[CrossRef]

A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
[CrossRef] [PubMed]

Neifeld, M. A.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

Paloczi, G. T.

J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005).
[CrossRef]

Park, Q.

Parra, E.

E. Parra and J. R. Lowell, "Toward applications of slow light technology," Opt. Photonics News 18, 40-45 (2007).
[CrossRef]

Pesala, B.

Poon, J.

J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005).
[CrossRef]

Qiu, M.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
[CrossRef]

Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, "Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling," Opt. Express 16, 4621-4630 (2008).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

Scheerlinck, S.

Scheuer, J.

J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005).
[CrossRef]

Schrauwen, J.

Schweinsberg, A.

H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q. Park, and D. J. Gauthier, "Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier," Opt. Lett. 32, 906-908 (2007).
[CrossRef] [PubMed]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef]

Schwertz, K.

Sedgwick, F.

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Shin, H.

Smith, D. D.

D. D. Smith and H. Chang, "Coherence phenomena in coupled optical resonators," J. Mod. Opt. 51, 2503-2513 (2004).

Song, K. Y.

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Stenner, M. D.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

Su, H.

H. Su and S. L. Chuang, "Room temperature slow and fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Su, Y.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
[CrossRef]

Taillaert, D.

Thévenaz, L.

Tomita, M.

Totsuka, K.

Uskov, A. V.

Van Laere, F.

Van Thourhout, D.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Wang, L. J.

A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Wosinski, L.

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Yariv, A.

J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005).
[CrossRef]

Zhang, Z.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
[CrossRef]

Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, "Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling," Opt. Express 16, 4621-4630 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. Su and S. L. Chuang, "Room temperature slow and fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Europhys. Lett. (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

IEEE J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008).
[CrossRef]

J. Mod. Opt. (2)

D. D. Smith and H. Chang, "Coherence phenomena in coupled optical resonators," J. Mod. Opt. 51, 2503-2513 (2004).

J. E. Heebner and R. W. Boyd, "‘Slow’ and ‘fast’ light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007).
[CrossRef]

F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Nature (4)

G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Photonics News (4)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006).
[CrossRef]

E. Parra and J. R. Lowell, "Toward applications of slow light technology," Opt. Photonics News 18, 40-45 (2007).
[CrossRef]

R. Y. Chiao and P. W. Milonni, "Fast Light, Slow Light," Opt. Photonics News 13, 26-30 (2002),
[CrossRef]

J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

Md. A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonant absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001).
[CrossRef] [PubMed]

Science (3)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Other (1)

K. Totsuka and M. Tomita, "Observation of fast light in Mie scattering processes," Phys. Rev. E 73, 045602(R) (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic illustration of a ring resonator side coupled to a waveguide with mutual-coupling. The grating is indicated as the red dashed circle.

Fig. 2.
Fig. 2.

Parametric phasor diagrams of the complex electric-field transmittivity for (a) Qcou <Qint and (b) Qcou >Qint . The black dots indicate δ=0 and the green dots indicate δ=π. The plots proceed counterclockwise as indicated around loop (black arrows) from δ=0 to δ=2π. (c) is a zoom-in plot of the phasor diagram for Qcou <Qint and Qmut <Qcri , showing that the transmission phasor and its gradient are perpendicular at split resonances, δ(sp) (red dots) and that the transmission phasor and its gradient are parallel at points in which dispersion reversals occur, δ=δ (dr) (blue dots).

Fig. 3.
Fig. 3.

Normalized transmission, effective phase shift and group delay for (a)(c)(e) Qcou <Qint and (b)(d)(f) Qcou >Qint

Fig. 4.
Fig. 4.

SEM photos of (a) the silicon microring resonator with a radius of 10 μm and (b) the grating on the side-wall of the ring resonator. Inset in (a) is a zoom-in view of the coupling region

Fig. 5.
Fig. 5.

The transmission spectrums with resonance-splitting for the (a) 10-μm-radius and (b) 5-μm-radius ring resonators. The red curves represent the measured transmission spectra and the blue curves are theoretical plots from the coupled mode equations.

Fig. 6.
Fig. 6.

Experimental setup. CW: continuous wave; PC: polarization controller; PPG: pulse pattern generator; MZM: Mach-Zehnder modulator; VOA: variable optical attenuator;

Fig. 7.
Fig. 7.

The normalized traces of the pulsed signal showing clear advancements and minor signal distortion for the (a) 10-μm-radius and (b) 5-μm-radius ring resonators

Fig. 8.
Fig. 8.

Temporal advancements for 1-ns pulse signal with respect to the signal wavelength for the 10-μm-radius ring resonator

Tables (1)

Tables Icon

Table 1 Dispersive responses of coupled resonators with mutual-coupling and the corresponding conditions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ddta=(jω01τint1τcou) ajksi jub
ddtb=(jω01τint1τcou) b jua
t=StSi=112Qcou (1j(δ+12Qmut)+12Qint+12Qcou+1j(δ12Qmut)+12Qint+12Qcou)

Metrics