Abstract

Optical probe methods for in vivo assessments of cutaneous photoaging are necessary in fields such as anti-aging dermatology and skin cosmetic development. We investigated the relation between wrinkle direction and collagen orientation in ultraviolet-B-exposed (UVB-exposed) skin using polarization-resolved second-harmonic-generation (SHG) microscopy. A polarization anisotropic image of the SHG light indicated that wrinkle direction in UVB-exposed skin is predominantly parallel to the orientation of dermal collagen fibers. Furthermore, collagen orientation in post-UVB-exposed skin with few wrinkles changed from that of UVB-exposed wrinkled skin to that of no-UVB-exposed skin. The method proposed has the potential to become a powerful non-invasive tool for assessment of cutaneous photoaging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Gilchrest, "Skin aging and photoaging: An overview," J. Am. Acad. Dermtol. 21, 610-613 (1989).
    [CrossRef]
  2. L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatol. 191, 93-98 (1995).
    [CrossRef]
  4. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
    [CrossRef] [PubMed]
  5. B. Masters and P. So, "Confocal microscopy and multi-photon excitation microscopy of human skin in vivo," Opt. Express 8, 2-10 (2001).
    [CrossRef] [PubMed]
  6. K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
    [CrossRef] [PubMed]
  7. J. A. Palero, H. S. de Bruijn, A. van der P.-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, "In vivo nonlinear spectral imaging in mouse skin," Opt. Express 14, 4395-4402 (2006).
    [CrossRef] [PubMed]
  8. S.-J. Lin, R.-Jr Wu, H.-Y. Tan, W. Lo, W.-C. Lin, T.-H. Young, C.-J. Hsu, J.-S. Chen, S.-H. Jee, and C.-Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 30, 2275-2277 (2005).
    [CrossRef] [PubMed]
  9. M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, "In vivo assessment of human skin aging by multiphoton laser scanning tomography," Opt. Lett. 31, 2879-2881 (2006).
    [CrossRef] [PubMed]
  10. T. Yasui, Y. Tohno, and T. Araki, "Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259-264 (2004).
    [CrossRef] [PubMed]
  11. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005).
    [CrossRef]
  12. T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004).
    [CrossRef] [PubMed]
  13. P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
    [CrossRef] [PubMed]
  14. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
    [CrossRef] [PubMed]
  15. K. KönigK, P. T. C. So, W. W. Mantulin, and E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two photon microscope," Opt. Lett. 22, 135-136 (1997).
    [CrossRef]
  16. P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
    [CrossRef]
  17. R. R. Anderson and J. A. Parish, "The optics of human skin, " J. Invest. Dermatol. 77, 13-19 (1981).
    [CrossRef] [PubMed]
  18. S. L. Jacques, "Origins of tissue optical properties in the UVA, Visible, and NIR regions," in OSA TOPS on Advances in Optical Imaging and Photon Migration, Vol. 2 (Optical Society of America, 1996), pp. 364-369, http://omlc.ogi.edu/news/jan98/skinoptics.html.
  19. I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
    [CrossRef]
  20. T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published).
    [PubMed]
  21. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093-3099 (2003).
    [CrossRef] [PubMed]
  22. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, "In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy," Opt. Express 14, 6178-6187 (2006).
    [CrossRef] [PubMed]
  23. S.-Y. Chen and C.-K. Sun, "In vivo imaging of human skin using harmonic generation microscopy," in Abstract of Focus on Microsc. 2008, pp. 59 (2008).
  24. L. H. Kligman, "The ultraviolet-irradiated hairless mouse: A model for photoaging," J. Am. Acad. Dermatol. 21, 623-631 (1989).
    [CrossRef] [PubMed]
  25. S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
    [CrossRef] [PubMed]
  26. M. G. Dunn and F. H. Silver, "Viscoelastic behavior of human connective tissue: relative contribution of viscous and elastic components," Connect. Tissue Res. 12, 59-70 (1983).
    [CrossRef] [PubMed]
  27. S. Osaki, "Distribution map of collagen fiber orientation in a whole calf leather," Anat. Rec. 254, 147-152 (1999).
    [CrossRef] [PubMed]
  28. W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984).
    [CrossRef] [PubMed]
  29. L. H. Kligman, F. J. Akin, and A. M. Kligman. "The Contributions of UVA and UVB to connective tissue damage in hairless mice," J. Invest. Dermatol. 84, 272-276 (1985).
    [CrossRef] [PubMed]
  30. G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
    [CrossRef] [PubMed]
  31. G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998).
    [CrossRef]
  32. D. Fagot, D. Asselineau, and F. Bernerd, "Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation," Arch. Dermatol. Res. 293, 576-583 (2002).
    [PubMed]

2006 (3)

2005 (2)

S.-J. Lin, R.-Jr Wu, H.-Y. Tan, W. Lo, W.-C. Lin, T.-H. Young, C.-J. Hsu, J.-S. Chen, S.-H. Jee, and C.-Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 30, 2275-2277 (2005).
[CrossRef] [PubMed]

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

2004 (2)

T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, "Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

2003 (3)

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093-3099 (2003).
[CrossRef] [PubMed]

2002 (3)

D. Fagot, D. Asselineau, and F. Bernerd, "Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation," Arch. Dermatol. Res. 293, 576-583 (2002).
[PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
[CrossRef]

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

2001 (2)

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

B. Masters and P. So, "Confocal microscopy and multi-photon excitation microscopy of human skin in vivo," Opt. Express 8, 2-10 (2001).
[CrossRef] [PubMed]

2000 (1)

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Osaki, "Distribution map of collagen fiber orientation in a whole calf leather," Anat. Rec. 254, 147-152 (1999).
[CrossRef] [PubMed]

1998 (2)

G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998).
[CrossRef]

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

1997 (1)

1996 (1)

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

1995 (2)

J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatol. 191, 93-98 (1995).
[CrossRef]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

1989 (2)

B. A. Gilchrest, "Skin aging and photoaging: An overview," J. Am. Acad. Dermtol. 21, 610-613 (1989).
[CrossRef]

L. H. Kligman, "The ultraviolet-irradiated hairless mouse: A model for photoaging," J. Am. Acad. Dermatol. 21, 623-631 (1989).
[CrossRef] [PubMed]

1985 (1)

L. H. Kligman, F. J. Akin, and A. M. Kligman. "The Contributions of UVA and UVB to connective tissue damage in hairless mice," J. Invest. Dermatol. 84, 272-276 (1985).
[CrossRef] [PubMed]

1984 (1)

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984).
[CrossRef] [PubMed]

1983 (1)

M. G. Dunn and F. H. Silver, "Viscoelastic behavior of human connective tissue: relative contribution of viscous and elastic components," Connect. Tissue Res. 12, 59-70 (1983).
[CrossRef] [PubMed]

1981 (1)

R. R. Anderson and J. A. Parish, "The optics of human skin, " J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

Akin, F. J.

L. H. Kligman, F. J. Akin, and A. M. Kligman. "The Contributions of UVA and UVB to connective tissue damage in hairless mice," J. Invest. Dermatol. 84, 272-276 (1985).
[CrossRef] [PubMed]

Amano, S.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

Anderson, R. R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

R. R. Anderson and J. A. Parish, "The optics of human skin, " J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

Araki, T.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, "Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published).
[PubMed]

Asselineau, D.

D. Fagot, D. Asselineau, and F. Bernerd, "Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation," Arch. Dermatol. Res. 293, 576-583 (2002).
[PubMed]

Bernerd, F.

D. Fagot, D. Asselineau, and F. Bernerd, "Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation," Arch. Dermatol. Res. 293, 576-583 (2002).
[PubMed]

Berrens, L.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984).
[CrossRef] [PubMed]

Bonner, R. F.

J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatol. 191, 93-98 (1995).
[CrossRef]

Bruls, W. A.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984).
[CrossRef] [PubMed]

Bückle, R.

Chen, I.-H.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
[CrossRef]

Chen, J.-S.

Chen, S.-Y.

Cheng, P. C.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

Cheng, P.-C.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
[CrossRef]

Chu, S.-W.

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093-3099 (2003).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
[CrossRef]

Da Silva, L. B.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Datta, S. C.

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

de Bruijn, H. S.

Dong, C.-Y.

Dunn, M. G.

M. G. Dunn and F. H. Silver, "Viscoelastic behavior of human connective tissue: relative contribution of viscous and elastic components," Connect. Tissue Res. 12, 59-70 (1983).
[CrossRef] [PubMed]

Elsner, P.

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Fagot, D.

D. Fagot, D. Asselineau, and F. Bernerd, "Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation," Arch. Dermatol. Res. 293, 576-583 (2002).
[PubMed]

Fisher, G. J.

G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998).
[CrossRef]

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

Fukuda, M.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

Fukushima, S.

T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published).
[PubMed]

Gilchrest, B. A.

B. A. Gilchrest, "Skin aging and photoaging: An overview," J. Am. Acad. Dermtol. 21, 610-613 (1989).
[CrossRef]

Gratton, E.

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Halbhuber, J. J.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

Hsu, C.-J.

Huang, H.-Y.

Inomata, S.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

Ito, M.

T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published).
[PubMed]

Jee, S.-H.

Kaatz, M.

Kang, S.

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

Kim, B.-M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Kim, K.-S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

Kligman, A. M.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

L. H. Kligman, F. J. Akin, and A. M. Kligman. "The Contributions of UVA and UVB to connective tissue damage in hairless mice," J. Invest. Dermatol. 84, 272-276 (1985).
[CrossRef] [PubMed]

Kligman, L. H.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

L. H. Kligman, "The ultraviolet-irradiated hairless mouse: A model for photoaging," J. Am. Acad. Dermatol. 21, 623-631 (1989).
[CrossRef] [PubMed]

L. H. Kligman, F. J. Akin, and A. M. Kligman. "The Contributions of UVA and UVB to connective tissue damage in hairless mice," J. Invest. Dermatol. 84, 272-276 (1985).
[CrossRef] [PubMed]

Kobayashi, K.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

Koehler, M. J.

Kohno, Y.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

König, K.

M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, "In vivo assessment of human skin aging by multiphoton laser scanning tomography," Opt. Lett. 31, 2879-2881 (2006).
[CrossRef] [PubMed]

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

K. KönigK, P. T. C. So, W. W. Mantulin, and E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two photon microscope," Opt. Lett. 22, 135-136 (1997).
[CrossRef]

Krieg, R.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

Lee, W.-J.

Lin, B.-L.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
[CrossRef]

Lin, C.-Y.

Lin, J.

G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998).
[CrossRef]

Lin, S.-J.

Lin, W.-C.

Liou, W. S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

Liu, T.-M.

Lo, W.

Mantulin, W. W.

Masters, B.

Matsunaga, Y.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

Nishiyama, T.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

Osaki, S.

S. Osaki, "Distribution map of collagen fiber orientation in a whole calf leather," Anat. Rec. 254, 147-152 (1999).
[CrossRef] [PubMed]

Palero, J. A.

Pan, S. J.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

Parish, J. A.

R. R. Anderson and J. A. Parish, "The optics of human skin, " J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

Park, M. S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

Peuckert, C.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

Rajadhyaksha, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Reiser, K. M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Riemann, I.

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

Rubenchik, A. M.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Sapadin, A. N.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Sasaki, K.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatol. 191, 93-98 (1995).
[CrossRef]

Schwartz, E.

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Shieh, D.-B.

Shih, A.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

Silver, F. H.

M. G. Dunn and F. H. Silver, "Viscoelastic behavior of human connective tissue: relative contribution of viscous and elastic components," Connect. Tissue Res. 12, 59-70 (1983).
[CrossRef] [PubMed]

Slaper, H.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984).
[CrossRef] [PubMed]

So, K, P. T. C.

So, P.

Stoller, P.

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

Sun, C.-K.

Tai, S.-P.

Takada, K.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

Takahashi, Y.

T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published).
[PubMed]

Talwar, H. S.

G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998).
[CrossRef]

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

Tan, H.-Y.

Tirlapur, U. K.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

Tohno, Y.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, "Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

Tsai, H.-J.

Tsai, T.-H.

Tsunenaga, M.

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

van der Leun, J. C.

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984).
[CrossRef] [PubMed]

Varani, J.

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

Voorhees, J. J.

G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998).
[CrossRef]

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

Wang, Z.-Q.

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

Webb, R. H.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Wu, P.-C.

Wu, R.-Jr

Yadlowsky, M.

J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatol. 191, 93-98 (1995).
[CrossRef]

Yasui, T.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

T. Yasui, Y. Tohno, and T. Araki, "Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published).
[PubMed]

Young, T.-H.

Yu, C.-H.

Anat. Rec. (1)

S. Osaki, "Distribution map of collagen fiber orientation in a whole calf leather," Anat. Rec. 254, 147-152 (1999).
[CrossRef] [PubMed]

Appl. Opt. (2)

T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published).
[PubMed]

T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004).
[CrossRef] [PubMed]

Arch. Dermatol. Res. (1)

D. Fagot, D. Asselineau, and F. Bernerd, "Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation," Arch. Dermatol. Res. 293, 576-583 (2002).
[PubMed]

Connect. Tissue Res. (1)

M. G. Dunn and F. H. Silver, "Viscoelastic behavior of human connective tissue: relative contribution of viscous and elastic components," Connect. Tissue Res. 12, 59-70 (1983).
[CrossRef] [PubMed]

Dermatol. (1)

J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatol. 191, 93-98 (1995).
[CrossRef]

Exp. Cell Res. (1)

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[CrossRef] [PubMed]

J. Am. Acad. Dermatol. (1)

L. H. Kligman, "The ultraviolet-irradiated hairless mouse: A model for photoaging," J. Am. Acad. Dermatol. 21, 623-631 (1989).
[CrossRef] [PubMed]

J. Am. Acad. Dermtol. (1)

B. A. Gilchrest, "Skin aging and photoaging: An overview," J. Am. Acad. Dermtol. 21, 610-613 (1989).
[CrossRef]

J. Biomed. Opt. (3)

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002).
[CrossRef] [PubMed]

T. Yasui, Y. Tohno, and T. Araki, "Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259-264 (2004).
[CrossRef] [PubMed]

J. Invest Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

J. Invest. Dermatol. (3)

R. R. Anderson and J. A. Parish, "The optics of human skin, " J. Invest. Dermatol. 77, 13-19 (1981).
[CrossRef] [PubMed]

S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003).
[CrossRef] [PubMed]

L. H. Kligman, F. J. Akin, and A. M. Kligman. "The Contributions of UVA and UVB to connective tissue damage in hairless mice," J. Invest. Dermatol. 84, 272-276 (1985).
[CrossRef] [PubMed]

J. Microsc. (1)

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998).
[CrossRef]

Nature (1)

G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Quantum Electron. (2)

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005).
[CrossRef]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
[CrossRef]

Photochem. Photobiol. (2)

G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998).
[CrossRef]

W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984).
[CrossRef] [PubMed]

Photodermatol. Photoimmunol. Photomed. (1)

L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000).
[CrossRef] [PubMed]

Other (2)

S. L. Jacques, "Origins of tissue optical properties in the UVA, Visible, and NIR regions," in OSA TOPS on Advances in Optical Imaging and Photon Migration, Vol. 2 (Optical Society of America, 1996), pp. 364-369, http://omlc.ogi.edu/news/jan98/skinoptics.html.

S.-Y. Chen and C.-K. Sun, "In vivo imaging of human skin using harmonic generation microscopy," in Abstract of Focus on Microsc. 2008, pp. 59 (2008).

Supplementary Material (5)

» Media 1: MOV (3399 KB)     
» Media 2: MOV (2999 KB)     
» Media 3: MOV (4034 KB)     
» Media 4: MOV (3748 KB)     
» Media 5: MOV (3011 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup. ND: neutral density filter; M: mirror; BS: beam splitter; RC light: reflectance confocal light; CL1 and CL2: confocal lenses; PH: pinhole; L: lens; IR-PD: infrared photodetector; HS: harmonic separator; SHG light: second-harmonic-generation light; F: infrared-cut filter; PMT: photon-counting-type photomultiplier tube; λ/2: half waveplate; GM: galvano mirrors; RL1 and RL2: relay lenses; OL: oil-immersion objective lens; PZT: piezoelectric transducer.

Fig. 2.
Fig. 2.

Protocol of sample preparation and optical photographs of skin surface of UVB-exposed (16 weeks old), post-UVB-exposed (22 weeks old), and two age-matched control samples (16 and 22 weeks old). Deep wrinkles were observed in the UVB-exposed skin. Vertical polarization of the laser light is parallel to the meridian line of the body while UVB-induced wrinkles run along the horizontal polarization of it.

Fig. 3.
Fig. 3.

Depth-resolved RC (upper row), SHG (middle row), and α images (bottom row) of UVB-exposed skin (16 weeks old) at the 50-μm intervals ((Media 1) shows consecutive change of their depth-resolved images at 5-μm intervals). Image size is 800 μm by 800 μm. The color scale of α value indicates the direction of collagen orientation: blue for vertical, red for horizontal, and white for neutral. The vertical polarization is parallel to the meridian line of the body while UVB-induced wrinkles run along the horizontal polarization of the laser light.

Fig. 4.
Fig. 4.

Depth-resolved RC (upper row), SHG (middle row), and α images (bottom row) of control skin (16 weeks old) at the 50-μm intervals ((Media 2) shows consecutive change of their depth-resolved images at 5-μm intervals). Image size is 800 μm by 800 μm. The vertical polarization is parallel to the meridian line of the body.

Fig. 5.
Fig. 5.

Cross-sectional α images of UVB-exposed skin (16 weeks old) and control skin (16 weeks old) ((Media 3) shows consecutive change of cross-sectional α images at 3.1-μm lateral intervals). Image size is 800-μm width by 300-μm depth. The vertical polarization is parallel to the meridian line of the body while UVB-induced wrinkles run along the horizontal polarization of the laser light.

Fig. 6.
Fig. 6.

Depth dependence of α2D values for four kinds of skin samples.

Fig. 7.
Fig. 7.

Statistics of α3D values for four kinds of skin sample (n = 5). **P<0.05. NS, not significant.

Fig. 8.
Fig. 8.

Depth-resolved RC (upper row), SHG (middle row), and α images (bottom row) of post-UVB-exposed skin (22 weeks old) at the 50-μm intervals ((Media 4) shows consecutive change of their depth-resolved images at 5-μm intervals). Image size is 800 μm by 800 μm. Disappeared wrinkles were parallel to the horizontal polarization of the laser light while the meridian line of the body is parallel to the vertical polarization.

Fig. 9.
Fig. 9.

Depth-resolved RC (upper row), SHG (middle row), and α images (bottom row) of control skin (22 weeks old) at the 50-μm intervals (Media 5) shows consecutive change of their depth-resolved images at 5-μm intervals). Image size is 800 μm by 800 μm. The vertical polarization is parallel to the meridian line of the body.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=(IvIH)/(Iv+IH).

Metrics