Abstract

In order to miniaturize and integrate conveniently in THz quasi-optical systems, binary axicons, based on binary optical ideas, are introduced in our paper and designed for generating pseudo-Bessel beams at THz frequencies. The designed binary axicons are easier to fabricate than holographic axicons, more compact and thus less lossy in the material when compared with classical cone axicons. To calculate the electromagnetic fields diffracted by binary axicons precisely, a two-dimension finite-difference time-domain (2-D FDTD) method in conjunction with Stratton-Chu formulas are employed in this paper. Applying this method, the properties of pseudo-Bessel beams produced by binary axicons are analyzed, and a brief summary is given in the end.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range

Xuli Wei, Changming Liu, Liting Niu, Zhongqi Zhang, Kejia Wang, Zhengang Yang, and Jinsong Liu
Appl. Opt. 54(36) 10641-10649 (2015)

Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field

Xue-Wen Chen, Vahid Sandoghdar, and Mario Agio
Opt. Express 18(10) 10878-10887 (2010)

Generation of nondiffracting Bessel beam using digital micromirror device

Lei Gong, Yu-Xuan Ren, Guo-Sheng Xue, Qian-Chang Wang, Jin-Hua Zhou, Min-Cheng Zhong, Zi-Qiang Wang, and Yin-Mei Li
Appl. Opt. 52(19) 4566-4575 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A  4, 651–654 (1987).
    [Crossref]
  2. Z. Bouchal, “Nondiffracting optical beams: physical properties, experiments, and applications,” Czech. J. Phys.  53, 537–78 (2003).
    [Crossref]
  3. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.  197, 239–245 (2001).
    [Crossref]
  4. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
    [Crossref] [PubMed]
  5. K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun.  216, 99–103 (2003).
    [Crossref]
  6. S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
    [Crossref]
  7. N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
    [Crossref]
  8. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun.  177, 297–301 (2000).
    [Crossref]
  9. J. A. Monsoriu, W. D. Furlan, P. Andres, and J. Lancis, “Fractal conical lenses,” Opt. Express 14, 9077–9082 (2006).
    [Crossref] [PubMed]
  10. I. Golub, “Fresnel axicon,” Opt. Lett.  31, 1890–1892 (2006).
    [Crossref] [PubMed]
  11. J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
    [Crossref]
  12. J. Courtial and G. Whyte, “Iterative algorithms for holographic shaping of non-diffracting and self-imaging light beams,” Opt. Express 14, 2108–2116 (2006).
    [Crossref] [PubMed]
  13. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am 44, 592–597 (1954).
    [Crossref]
  14. D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
    [Crossref]
  15. K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A  13, 2219–2231 (1996).
    [Crossref]
  16. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, NewYork, 1941).

2006 (3)

2005 (1)

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
[Crossref]

2003 (5)

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Z. Bouchal, “Nondiffracting optical beams: physical properties, experiments, and applications,” Czech. J. Phys.  53, 537–78 (2003).
[Crossref]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun.  216, 99–103 (2003).
[Crossref]

D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
[Crossref]

2001 (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.  197, 239–245 (2001).
[Crossref]

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun.  177, 297–301 (2000).
[Crossref]

1999 (1)

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
[Crossref]

1996 (1)

K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A  13, 2219–2231 (1996).
[Crossref]

1987 (1)

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A  4, 651–654 (1987).
[Crossref]

1954 (1)

J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am 44, 592–597 (1954).
[Crossref]

akli, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Ala-Laurinaho, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Andres, P.

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.  197, 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun.  177, 297–301 (2000).
[Crossref]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
[Crossref]

Bouchal, Z.

Z. Bouchal, “Nondiffracting optical beams: physical properties, experiments, and applications,” Czech. J. Phys.  53, 537–78 (2003).
[Crossref]

Courtial, J.

J. Courtial and G. Whyte, “Iterative algorithms for holographic shaping of non-diffracting and self-imaging light beams,” Opt. Express 14, 2108–2116 (2006).
[Crossref] [PubMed]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.  197, 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun.  177, 297–301 (2000).
[Crossref]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A  4, 651–654 (1987).
[Crossref]

Feng, D.

D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
[Crossref]

Furlan, W. D.

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.  197, 239–245 (2001).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

Gaylord, T. K.

K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A  13, 2219–2231 (1996).
[Crossref]

Glytsis, E. N.

K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A  13, 2219–2231 (1996).
[Crossref]

Golub, I.

I. Golub, “Fresnel axicon,” Opt. Lett.  31, 1890–1892 (2006).
[Crossref] [PubMed]

Hirayama, K.

K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A  13, 2219–2231 (1996).
[Crossref]

Jin, G. F.

D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
[Crossref]

Koskinen, T.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Lancis, J.

Lanigan, W.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
[Crossref]

Liu, H. T.

D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
[Crossref]

Lonnqvist, A.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Mahon, R.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
[Crossref]

Mallat, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

McLeod, J. H.

J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am 44, 592–597 (1954).
[Crossref]

Meltaus, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Monk, S.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
[Crossref]

Monsoriu, J. A.

Murphy, J. A.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
[Crossref]

Noponen, E.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Padgett, M. J.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
[Crossref]

Raisanen, A. V.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Robertson, D. A.

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
[Crossref]

Saily, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Salo, J.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Salomaa, M. M.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.  197, 239–245 (2001).
[Crossref]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, NewYork, 1941).

Tan, Q. F.

D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
[Crossref]

Trappe, N.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
[Crossref]

Viikari, V.

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Wang, K.

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun.  216, 99–103 (2003).
[Crossref]

Whyte, G.

Withington, S.

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
[Crossref]

Yan, Y. B.

D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
[Crossref]

Yin, Ch.

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun.  216, 99–103 (2003).
[Crossref]

Zeng, L.

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun.  216, 99–103 (2003).
[Crossref]

Czech. J. Phys (1)

Z. Bouchal, “Nondiffracting optical beams: physical properties, experiments, and applications,” Czech. J. Phys.  53, 537–78 (2003).
[Crossref]

IEEE Trans. Microwave Theory Tech (1)

J. Meltaus, J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. akli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisanen, “Millimeter-wave beam shaping using holograms,” IEEE Trans. Microwave Theory Tech.  51, 1274–1279 (2003).
[Crossref]

Infrared Phys. Technol (1)

N. Trappe, R. Mahon, W. Lanigan, J. A. Murphy, and S. Withington, “The quasi-optical analysis of Bessel beams in the far infrared,” Infrared Phys. Technol.  46, 233–247 (2005).
[Crossref]

J. Opt. Soc. Am (4)

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A  4, 651–654 (1987).
[Crossref]

J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am 44, 592–597 (1954).
[Crossref]

D. Feng, Y. B. Yan, G. F. Jin, Q. F. Tan, and H. T. Liu, “Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm,” J. Opt. Soc. Am. A  20, 1739–1745 (2003).
[Crossref]

K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A  13, 2219–2231 (1996).
[Crossref]

Opt. Commun (4)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun.  177, 297–301 (2000).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.  197, 239–245 (2001).
[Crossref]

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun.  216, 99–103 (2003).
[Crossref]

S. Monk, J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, “The generation of Bessel beams at millimetre-wave frequencies by use of an axicon,” Opt. Commun.  170, 213–215 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett (1)

I. Golub, “Fresnel axicon,” Opt. Lett.  31, 1890–1892 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett (1)

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.  91, 093602 (2003).
[Crossref] [PubMed]

Other (1)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, NewYork, 1941).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The design process of a binary axicon. (a) A bulk axicon. (b) An axicon removed the unwanted material (red part). (c) An equivalent binary axicon with continuous profile. (d) An equivalent binary axicon quantized into four levels.

Fig. 2.
Fig. 2.

Schematic diagram of 2-D FDTD computational model, where the 8-level binary axicon is embedded into FDTD grid.

Fig. 3.
Fig. 3.

The axial intensity distributions for the designed binary axicon and the bulk one.

Fig. 4.
Fig. 4.

Electric-field amplitude patterns plotted in a pseudo-color representation. (a) For the bulk axicon. (b) For our designed binary axicon.

Fig. 5.
Fig. 5.

The axial and transverse intensity distributions for the designed binary axicon. (a) The on-axial intensity versus propagation distance z. (b) The transverse intensity distribution at z = 0.8Zmax plane. (c) z = 1.0Zmax . (d) z = 1.2Zmax.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(ρ,z,t)=J0 (kρ) exp (i(kzzωt))
h(ρ)=φ(ρ)/[(n1n0)k]
h(ρ)=[φ(ρ)mod2π] / [(n1n0)k]
hq(ρ)=int[h(ρ)/Δ] Δ
E(r)=L {jωμ[n×H(r)]G0(r,r)[n×E(r)]×G0(r,r)[nE(r)]G0(r,r)}dL
H(r)=L{jωℰ[n×E(r)]G0(r,r)[n×H(r)]×G0(r,r)[nH(r)]G0(r,r)}dL

Metrics