Abstract

An optical fast associative filtering method based on a multichannel volume holographic correlator to search the database as a front-end filter is described. The features of searching query are parallelly extracted by a volume holographic correlator based on two-dimensional discrete Walsh transform, and are used to measure the similarity between the query and all the database records. The best matches are picked up for further searching. An experiment is carried out, and the experimental results prove the validity of the method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gu, H. Fu, and J. R. Lien, "Correlation patterns and cross-talk noise in volume holographic optical correlators," J. Opt. Soc. Am. A 12, 861-868 (1995).
    [CrossRef]
  2. C. Ouyang, L. C. Cao, Q. S. He, Y. Liao, M. X. Wu, and G. F. Jin, "Sidelobe suppression in volume holographic optical correlators by use of speckle modulation," Opt. Lett. 28, 1972-1974 (2003).
    [CrossRef] [PubMed]
  3. K. Ni, Z. Y. Qu, L. C. Cao, P. Su, Q. S. He, and G. F. Jin, "Improving accuracy of multichannel volume holographic correlators by using a two-dimensional interleaving method," Opt. Lett. 32, 2972-2974 (2007).
    [CrossRef] [PubMed]
  4. G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
    [CrossRef]
  5. G. W. Burr, "Holography for information storage and processing," Proc. SPIE 5181, 70-84 (2003).
    [CrossRef]
  6. A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
    [CrossRef]
  7. Y. Liao, Y. B. Guo, L. C. Cao, X. S. Ma, Q. S. He, and G. F. Jin, "Experiment on parallel correlated recognition of 2030 human faces based on speckle modulation," Opt. Express 12, 4047-4052 (2004).
    [CrossRef] [PubMed]
  8. A. V. Lugt, "Signal detection by complex spatial filtering," IEEE Transactions on Information Theory 10, 139-145 (1964).
    [CrossRef]
  9. J. R. Leger and S. H. Lee, "Coherent optical implementation of generalized two-dimensional transforms," Opt. Eng. 18, 518-523 (1979).
  10. J. R. Leger and S. H. Lee, "Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions," Appl. Opt. 21, 274-287 (1982).
    [CrossRef] [PubMed]
  11. I. Glaser, "Noncoherent parallel optical processor for discrete two-dimensional linear transformations," Opt. Lett. 5, 449-451 (1980).
    [CrossRef] [PubMed]
  12. I. Glaser, "Lenslet array processors," Appl. Opt. 21, 1271-1280 (1982).
    [CrossRef] [PubMed]
  13. I. Glaser, "Compact lenslet-array-based holographic correlator/convolver," Opt. Lett. 20, 1565-1567 (1995).
    [CrossRef] [PubMed]
  14. F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
    [CrossRef]
  15. K. G. Beauchamp, Walsh Functions and Their Application (Academic Press, London 1975).

2007

2006

A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
[CrossRef]

2004

2003

2000

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

1999

1995

1982

1980

1979

J. R. Leger and S. H. Lee, "Coherent optical implementation of generalized two-dimensional transforms," Opt. Eng. 18, 518-523 (1979).

1964

A. V. Lugt, "Signal detection by complex spatial filtering," IEEE Transactions on Information Theory 10, 139-145 (1964).
[CrossRef]

Burr, G. W.

G. W. Burr, "Holography for information storage and processing," Proc. SPIE 5181, 70-84 (2003).
[CrossRef]

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

Cao, L. C.

Coufal, H.

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

Fu, H.

Glaser, I.

Grawert, F.

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

Gu, C.

Guo, Y. B.

Hanssen, H.

Hassen, H.

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

He, Q. S.

Heifetz, A.

A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
[CrossRef]

Jefferson, C. M.

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

Jin, G. F.

Jurich, M.

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

Kobras, S.

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

Lee, J. K.

A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
[CrossRef]

Lee, S. H.

J. R. Leger and S. H. Lee, "Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions," Appl. Opt. 21, 274-287 (1982).
[CrossRef] [PubMed]

J. R. Leger and S. H. Lee, "Coherent optical implementation of generalized two-dimensional transforms," Opt. Eng. 18, 518-523 (1979).

Leger, J. R.

J. R. Leger and S. H. Lee, "Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions," Appl. Opt. 21, 274-287 (1982).
[CrossRef] [PubMed]

J. R. Leger and S. H. Lee, "Coherent optical implementation of generalized two-dimensional transforms," Opt. Eng. 18, 518-523 (1979).

Liao, Y.

Lien, J. R.

Lugt, A. V.

A. V. Lugt, "Signal detection by complex spatial filtering," IEEE Transactions on Information Theory 10, 139-145 (1964).
[CrossRef]

Ma, X. S.

Ni, K.

Ouyang, C.

Qu, Z. Y.

Riedel, M.

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

Shahriar, M. S.

A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
[CrossRef]

Shen, J. T.

A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
[CrossRef]

Su, P.

Tripathi, R.

A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
[CrossRef]

Wu, M. X.

Appl. Opt.

IEEE Transactions on Information Theory

A. V. Lugt, "Signal detection by complex spatial filtering," IEEE Transactions on Information Theory 10, 139-145 (1964).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

J. R. Leger and S. H. Lee, "Coherent optical implementation of generalized two-dimensional transforms," Opt. Eng. 18, 518-523 (1979).

A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, " Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory," Opt. Eng. 45, 025201 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

F. Grawert, S. Kobras, G. W. Burr, H. Coufal, H. Hassen, M. Riedel, C. M. Jefferson, and M. Jurich, "Content-addressable holographic database," Proc. SPIE 4109, 177-188 (2000)
[CrossRef]

G. W. Burr, "Holography for information storage and processing," Proc. SPIE 5181, 70-84 (2003).
[CrossRef]

Other

K. G. Beauchamp, Walsh Functions and Their Application (Academic Press, London 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

System scheme

Fig. 2.
Fig. 2.

32 basis images obtained by encoding Walsh functions with N=4. (a) fm,n 0 , (b) fm,n 1 .

Fig. 3.
Fig. 3.

Experimental setup for demonstrating the method.

Fig. 4.
Fig. 4.

One of the 2000 records

Fig. 5.
Fig. 5.

Experimental output of the 1350th record

Fig. 6.
Fig. 6.

Similarity between the 1350th record and all the database records in the front-end searching.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Xm,n=1N2 i=0N1j=0N1xi,jWAL(m,n,i,j),m,n=0,1,,N1
g (xc=xm,yc=ym) d x0 d y0 f (x0,y0) fm (x0,y0) , m =1,2,3,
WAL(m,n,i,j)=WAL0(m,n,i,j)+(1)WAL1(m,n,i,j)
Xm,n=1N2[xi,jWAL0(m,n,i,j)xi,jWAL1(m,n,i,j)]
xi,j WAL0 (m,n,i,j) f fm,n0
xi,j WAL1 (m,n,i,j) f fm,n1
Xm,n f fm,n0 f'fm,n1
R=m,nXm,nX̅m,nm,nXm,n2X̅m,n2

Metrics