Abstract

An experimental investigation of the transmission of multimode capillary waveguide arrays containing a liquid nonlinear absorber shows an enhanced nonlinear response relative to that found in a single waveguide and to the same length of bulk material. Comparison of the nonlinear response of arrays with different pitch to diameter (d/Λ) ratios confirm that both the intensity distribution within an individual waveguide and coupling between the elements of the array influence the overall nonlinear response.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, "Spatial photonics in nonlinear waveguide arrays," Opt. Express 13, 1780-1796 (2005).
    [CrossRef] [PubMed]
  2. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817 (2003).
    [CrossRef] [PubMed]
  3. H. S. Eisenberg, R. Morandotti, Y. Silberberg, J. M. Arnold, G. Pennelli, and J. S. Aitchison, "Optical discrete solitons in waveguide arrays. I. Soliton formation," J. Opt. Soc. Am. B 19, 2938-2944 (2002).
    [CrossRef]
  4. U. Peschel, R. Morandotti, J. M. Arnold, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, T. Pertsch, and F. Lederer, "Optical discrete solitons in waveguide arrays. 2. Dynamic properties," J. Opt. Soc. Am. B 19, 2637-2644 (2002).
    [CrossRef]
  5. A. Neyer, B. Wittmann, and M. Jöhnck, "Plastic-optical-fiber-based parallel optical interconnects," IEEE J. Sel. Top. Quantum Electron. 5, 193-200 (1999).
    [CrossRef]
  6. M. A. van Eijkelenborg, "Imaging with microstructured polymer fibre," Opt. Express 12, 342-346 (2004).
    [CrossRef] [PubMed]
  7. I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004).
    [CrossRef]
  8. I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid waveguided fiber array," IEEE J. Sel. Top. Quantum Electron. 7, 760-768 (2001).
    [CrossRef]
  9. J. J. Butler, J. J. Wathen, S. R. Flom, R. G. S. Pong, and J. S. Shirk, "Optical limiting properties of nonlinear multimode waveguides," Opt. Lett. 28, 1689-1691 (2003).
    [CrossRef] [PubMed]
  10. W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode Excitation In A Multimode Optical-Fibre Waveguide," Electron. Lett. 9, 412-414 (1973).
    [CrossRef]
  11. M. Imai, E.H. Hara "Excitation of Fundamental and Low-Order Modes of Optical Fiber Waveguides by Gaussian Beams," Appl. Opt. 13, 1893 (1974).
    [CrossRef] [PubMed]
  12. P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  13. S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, "A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes," Appl. Phys. Lett. 71, 10-12 (1997).
    [CrossRef]
  14. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994).
    [CrossRef] [PubMed]
  15. P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
    [CrossRef]
  16. K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
    [CrossRef]
  17. J. S. Shirk, "Protecting the War Fighter’s Vision in a Laser-Rich, Battlefield Environment," Opt. Photonics News 11, 19 (2000).
    [CrossRef]

2005 (1)

2004 (2)

2003 (3)

J. J. Butler, J. J. Wathen, S. R. Flom, R. G. S. Pong, and J. S. Shirk, "Optical limiting properties of nonlinear multimode waveguides," Opt. Lett. 28, 1689-1691 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817 (2003).
[CrossRef] [PubMed]

P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (1)

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid waveguided fiber array," IEEE J. Sel. Top. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

2000 (1)

J. S. Shirk, "Protecting the War Fighter’s Vision in a Laser-Rich, Battlefield Environment," Opt. Photonics News 11, 19 (2000).
[CrossRef]

1999 (1)

A. Neyer, B. Wittmann, and M. Jöhnck, "Plastic-optical-fiber-based parallel optical interconnects," IEEE J. Sel. Top. Quantum Electron. 5, 193-200 (1999).
[CrossRef]

1997 (1)

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, "A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes," Appl. Phys. Lett. 71, 10-12 (1997).
[CrossRef]

1994 (1)

1993 (1)

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

1988 (1)

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
[CrossRef]

1974 (1)

1973 (1)

W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode Excitation In A Multimode Optical-Fibre Waveguide," Electron. Lett. 9, 412-414 (1973).
[CrossRef]

Aitchison, J. S.

Alvarez, D.

J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994).
[CrossRef] [PubMed]

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

Arnold, J. M.

Bartal, G.

Buljan, H.

Butler, J. J.

Chen, P. H.

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid waveguided fiber array," IEEE J. Sel. Top. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Choong, I.

J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994).
[CrossRef] [PubMed]

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

Christodoulides, D. N.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817 (2003).
[CrossRef] [PubMed]

Cohen, O.

Diaz, A.

I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid waveguided fiber array," IEEE J. Sel. Top. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Ding, J.

Efremidis, N. K.

Eisenberg, H. S.

Firey, P. A.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
[CrossRef]

Fleischer, J. W.

Flom, S. R.

Ford, W. E.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
[CrossRef]

Freedman, B.

Gambling, W. A.

W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode Excitation In A Multimode Optical-Fibre Waveguide," Electron. Lett. 9, 412-414 (1973).
[CrossRef]

Hara, E.H.

Hollins, R. C.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, "A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes," Appl. Phys. Lett. 71, 10-12 (1997).
[CrossRef]

Imai, M.

Jöhnck, M.

A. Neyer, B. Wittmann, and M. Jöhnck, "Plastic-optical-fiber-based parallel optical interconnects," IEEE J. Sel. Top. Quantum Electron. 5, 193-200 (1999).
[CrossRef]

Kenney, M. E.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
[CrossRef]

Khoo, I. C.

I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid waveguided fiber array," IEEE J. Sel. Top. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Lederer, F.

Manela, O.

Mansour, K.

J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994).
[CrossRef] [PubMed]

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

Marder, S. R.

J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994).
[CrossRef] [PubMed]

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

Matsumura, H.

W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode Excitation In A Multimode Optical-Fibre Waveguide," Electron. Lett. 9, 412-414 (1973).
[CrossRef]

Morandotti, R.

Neyer, A.

A. Neyer, B. Wittmann, and M. Jöhnck, "Plastic-optical-fiber-based parallel optical interconnects," IEEE J. Sel. Top. Quantum Electron. 5, 193-200 (1999).
[CrossRef]

Payne, D. N.

W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode Excitation In A Multimode Optical-Fibre Waveguide," Electron. Lett. 9, 412-414 (1973).
[CrossRef]

Pennelli, G.

Perry, J. W.

J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994).
[CrossRef] [PubMed]

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

Perry, K. J.

J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994).
[CrossRef] [PubMed]

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

Pertsch, T.

Peschel, U.

Pong, R. G. S.

Rodgers, M. A. J.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
[CrossRef]

Russell, P.

P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sambles, J. R.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, "A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes," Appl. Phys. Lett. 71, 10-12 (1997).
[CrossRef]

Schwartz, T.

Segev, M.

Shirk, J. S.

Silberberg, Y.

Sounik, J. R.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
[CrossRef]

Swatton, S. N. R.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, "A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes," Appl. Phys. Lett. 71, 10-12 (1997).
[CrossRef]

van Eijkelenborg, M. A.

Wathen, J. J.

Welford, K. R.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, "A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes," Appl. Phys. Lett. 71, 10-12 (1997).
[CrossRef]

Wittmann, B.

A. Neyer, B. Wittmann, and M. Jöhnck, "Plastic-optical-fiber-based parallel optical interconnects," IEEE J. Sel. Top. Quantum Electron. 5, 193-200 (1999).
[CrossRef]

Wood, M. V.

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid waveguided fiber array," IEEE J. Sel. Top. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, "A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes," Appl. Phys. Lett. 71, 10-12 (1997).
[CrossRef]

Electron. Lett. (1)

W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode Excitation In A Multimode Optical-Fibre Waveguide," Electron. Lett. 9, 412-414 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Neyer, B. Wittmann, and M. Jöhnck, "Plastic-optical-fiber-based parallel optical interconnects," IEEE J. Sel. Top. Quantum Electron. 5, 193-200 (1999).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid waveguided fiber array," IEEE J. Sel. Top. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, "Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction," J. Am. Chem. Soc. 110, 7626-7630 (1988).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

J. S. Shirk, "Protecting the War Fighter’s Vision in a Laser-Rich, Battlefield Environment," Opt. Photonics News 11, 19 (2000).
[CrossRef]

Proc. SPIE (1)

K. Mansour, D. Alvarez, K. J. Perry, I. Choong, S. R. Marder, and J. W. Perry, "Dynamics of optical limiting in heavy-atom-substituted phthalocyanines," Proc. SPIE 1853, 132-141 (1993).
[CrossRef]

Science (1)

P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Images of the capillary arrays with white light illumination

Fig. 2.
Fig. 2.

Total transmission of the array as a function of incident energy for the nonlinear capillary arrays. Green– Array 1; Pink– Array 2; Blue– Array 3. Red line is a model of the transmission of a single capillary with approximately the same open area as the arrays.

Fig. 3.
Fig. 3.

Transmission of the excited waveguide as a function of incident energy. Green– Array 1; Pink– Array 2; Blue– Array 3. The lines are the fit of a model with the effective beam diameter as a fitting parameter.

Fig 4.
Fig 4.

(a). Output energy vs. input energy for Array 2. Pink – entire array; blue – excited waveguide; green – nearest neighbor waveguides; red– next nearest neighbor waveguides. Solid lines are calculated for linear transmission assuming constant coupling efficiency. (b). Images of the spatial distribution of the intensity at the output face of Array 2. The intensities in the nearest neighbor and next nearest neighbor waveguides are much lower than in the central, excited waveguide. The false color scales have been adjusted to show the distribution in each type.

Tables (1)

Tables Icon

Table 1. Dimensions of Capillary Arrays

Metrics