Abstract

A novel method for the achievement of zero-broadening in a SBS based slow-light system is discussed in theory and demonstrated experimentally. The system is realized just with a single broadened Bril-louin gain. It is shown, that if the gain bandwidth is much broader than the initial pulse width, the output pulse width decreases with increasing pump power. A compression of approximately 90 % of the initial pulse width was achieved in simulation and experiment.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. Herráez, L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [CrossRef] [PubMed]
  2. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  3. R. Camacho, M. V. Pack, J. C. Howell, “Large Fractional Pulse Delays in a Hot Rubidium Vapor,” in Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper TuD2.
  4. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
    [CrossRef] [PubMed]
  5. T. Schneider, R. Henker, K. Lauterbach, M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15, 9606–9613 (2007).
    [CrossRef] [PubMed]
  6. M. González Herráez, K. Y. Song, L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
    [CrossRef] [PubMed]
  7. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS Slow Light in an Optical Fiber,” J. Lightwave Technol. 25, 201–206 (2007).
    [CrossRef]
  8. T. Schneider, R. Henker, K. Lauterbach, M. Junker, “Distortion reduction in Slow Light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285 (2008).
    [CrossRef] [PubMed]
  9. R. Pant, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
    [CrossRef] [PubMed]
  10. S. Wang, L. Ren, Y. Liu, Y. Tomita, ”Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
    [CrossRef] [PubMed]
  11. T. Schneider, A. Wiatrek, R. Henker, “Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays,” Opt. Express 16, 15617–15622 (2008).
    [CrossRef] [PubMed]
  12. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  13. T. Schneider, M. Junker, K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B 23, 1012–1019 (2006).
    [CrossRef]
  14. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384 (2005).
    [CrossRef]

2008 (4)

2007 (3)

2006 (2)

2005 (3)

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Camacho, R.

R. Camacho, M. V. Pack, J. C. Howell, “Large Fractional Pulse Delays in a Hot Rubidium Vapor,” in Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper TuD2.

Dawes, A. M. C.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384 (2005).
[CrossRef]

Gauthier, D. J.

González Herráez, M.

Henker, R.

Herráez, M.

Howell, J. C.

R. Camacho, M. V. Pack, J. C. Howell, “Large Fractional Pulse Delays in a Hot Rubidium Vapor,” in Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper TuD2.

Junker, M.

Lauterbach, K.

Lauterbach, K.-U.

Liu, Y.

Neifeld, M. A.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384 (2005).
[CrossRef]

Pack, M. V.

R. Camacho, M. V. Pack, J. C. Howell, “Large Fractional Pulse Delays in a Hot Rubidium Vapor,” in Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper TuD2.

Pant, R.

Ren, L.

Schneider, T.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378–2384 (2005).
[CrossRef]

Shi, Z.

Song, K. Y.

Stenner, M. D.

Thévenaz, L.

Tomita, Y.

Wang, S.

Wiatrek, A.

Willner, A. E.

Zhang, L.

Zhu, Z.

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Other (2)

R. Camacho, M. V. Pack, J. C. Howell, “Large Fractional Pulse Delays in a Hot Rubidium Vapor,” in Slow and Fast Light, Technical Digest (CD) (Optical Society of America, 2006), paper TuD2.

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Normalized pulse spectra (a), gain spectra (b), phase response spectra (c) and normalized pulse amplitudes (d) at different pump powers and with reference to initial temporal pulse and initial pulse spectrum.

Fig. 2.
Fig. 2.

FWHM ratio as a function of the pump power at different gain bandwidths (400 MHz, 550 MHz, 700 MHz, 850 MHz, and 950 MHz).

Fig. 3.
Fig. 3.

Experimental setup. MZM: Mach-Zehnder modulator, SSMF: standard single mode fiber, C: circulator, EDFA: Erbium doped fiber amplifier, VOA: variable optical attenuator, PD: photodiode, OSA: optical spectrum analyzer, Osci: oscilloscope.

Fig. 4.
Fig. 4.

Pulse evolution in comparison to the fiber output reference pulse.

Fig. 5.
Fig. 5.

Fractional pulse delay (a) and FWHM ratio (b) as a function of the pump power at different gain bandwidths (370 MHz, 540 MHz, 700 MHz, 830 MHz, and 923 MHz).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E S z = ( g B 2 A eff Δ k eR P P α 2 ) E S + j · ( g B 2 A eff Δ k eI P P + γ P S ) E S
E P z = ( g B 2 A eff Δ k eR P S + α 2 ) E P ,
Δ k eR = exp [ ln ( 2 ) ( ω ω 0 Γ ) 2 ]
Δ k eI = j exp [ ln ( 2 ) ( ω ω 0 Γ ) 2 ] × erf [ j ln ( 2 ) ω ω 0 Γ ] ,

Metrics