Abstract

The stability of the photonic properties of Si-infiltrated opals for fabrication disorder is tested with following models of applied imperfections: deviations in radii of spheres, deviations in spheres positions and both of them. The deviations are assumed to be distributed accordingly to the normal law and to the skewed distribution experimentally observed in the process of production of polymer self-assembled crystals. The criteria for the photonic crystals tolerances are evaluated versus the quality of photonic insulation provided by films or bulk spheres of finite thicknesses. In addition the stability of the photonic crystal waveguides in inverted opals is tested versus the imperfections strength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 3, 2222-2226 (2008).
  2. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda, "Inverse silica opal photonic crystals for optical sensing applications," Opt. Express 15, 12979-12988 (2007).
    [CrossRef] [PubMed]
  3. M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002)
    [CrossRef]
  4. M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004).
    [CrossRef]
  5. D. Gerace and L. C. Andreani, "Disorder-induced losses in photonic crystal waveguides with line defects," Opt. Lett. 29, 1897-1899 (2004).
    [CrossRef] [PubMed]
  6. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorder," Opt. Lett. 29, 2782-2784 (2004).
    [CrossRef] [PubMed]
  7. M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
    [CrossRef]
  8. R. Ferrini, D. Leuenberger, R. Houdre, H. Benisty, M. Kamp, and A. Forchel, "Disorder-induced losses in planar photonic crystals," Opt. Lett. 31, 1426-1428 (2006).
    [CrossRef] [PubMed]
  9. Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
    [CrossRef]
  10. Z.-Y. Li and Z.-Q. Zhang, "Fragility of photonic band gaps in inverse-opal photonic crystals," Phys. Rev. B 62, 1516-1519 (2000).
    [CrossRef]
  11. V. Yannopapas, N. Stefanou, and A. Modinos, "Effects of stacking faults on the optical properties of inverted opals," Phys. Rev. Lett. 86, 4811-4814 (2001).
    [CrossRef] [PubMed]
  12. V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
    [CrossRef]
  13. F. Galisteo Lopez and W. L. Vos, "Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder," Phys. Rev. E 66, 036616 (2002).
    [CrossRef]
  14. A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
    [CrossRef] [PubMed]
  15. V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Phys. Rev. B 68, 193205 (2003).
    [CrossRef]
  16. M. Allard and E. H. Sargent, "Impact of polydispersity on light propagation in colloidal photonic crystals," Appl. Phys. Lett. 85, 5887-5889 (2004).
    [CrossRef]
  17. A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
    [CrossRef]
  18. E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005).
    [CrossRef]
  19. R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005).
    [CrossRef]
  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, New York, 1992).
  21. A. Blanco and C. López, "Silicon onion-layer nanostructures arranged in three dimensions," Adv. Mater. 18, 1593-1597 (2006).
    [CrossRef]
  22. W. Mächtle and L. Börger, Analytical Ultracentrifugation of Polymers and Nanoparticles (Springer, 2006).
  23. H. Cölfen, Analytical Ultracentrifugation of Nanoparticles, in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, 2004), p. 67-88.
  24. C. Kittel, Introduction to Solid State Physics (Wiley & Sons, New York, 1971).
  25. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpoth, M. Kristensen, T. Niemi, and H. M. H. Chong, "Comprehensive FDTD modeling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004).
    [CrossRef] [PubMed]
  26. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
    [CrossRef]
  27. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896 (1998).
    [CrossRef]
  28. E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
    [CrossRef]
  29. A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
    [CrossRef]
  30. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
    [CrossRef]
  31. V. Yannopapas, A. Modinos, and N. Stefanou, "Waveguides of defect chains in photonic crystals," Phys. Rev. B 65, 235201 (2002).
    [CrossRef]
  32. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
    [CrossRef]
  33. A. Chutinan and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E 71, 026605 (2005).
    [CrossRef]
  34. Y. Jin, C. A. Leatherdale, and D. J. Norris, "Tailoring air defects in self-assembled photonic bandgap crystals," Adv. Mater. 17, 1908-1911 (2005).
    [CrossRef]
  35. V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161113 (2006).
    [CrossRef]
  36. V. Lousse and S. Fan, "Waveguides in inverted opal photonic crystals," Opt. Express 14, 866-78 (2006).
    [CrossRef] [PubMed]
  37. Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
    [CrossRef] [PubMed]
  38. K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003).
    [CrossRef]

2008 (1)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 3, 2222-2226 (2008).

2007 (1)

2006 (5)

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
[CrossRef]

R. Ferrini, D. Leuenberger, R. Houdre, H. Benisty, M. Kamp, and A. Forchel, "Disorder-induced losses in planar photonic crystals," Opt. Lett. 31, 1426-1428 (2006).
[CrossRef] [PubMed]

A. Blanco and C. López, "Silicon onion-layer nanostructures arranged in three dimensions," Adv. Mater. 18, 1593-1597 (2006).
[CrossRef]

V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161113 (2006).
[CrossRef]

V. Lousse and S. Fan, "Waveguides in inverted opal photonic crystals," Opt. Express 14, 866-78 (2006).
[CrossRef] [PubMed]

2005 (5)

A. Chutinan and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E 71, 026605 (2005).
[CrossRef]

Y. Jin, C. A. Leatherdale, and D. J. Norris, "Tailoring air defects in self-assembled photonic bandgap crystals," Adv. Mater. 17, 1908-1911 (2005).
[CrossRef]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
[CrossRef]

E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005).
[CrossRef]

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005).
[CrossRef]

2004 (6)

M. Allard and E. H. Sargent, "Impact of polydispersity on light propagation in colloidal photonic crystals," Appl. Phys. Lett. 85, 5887-5889 (2004).
[CrossRef]

M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004).
[CrossRef]

D. Gerace and L. C. Andreani, "Disorder-induced losses in photonic crystal waveguides with line defects," Opt. Lett. 29, 1897-1899 (2004).
[CrossRef] [PubMed]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorder," Opt. Lett. 29, 2782-2784 (2004).
[CrossRef] [PubMed]

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpoth, M. Kristensen, T. Niemi, and H. M. H. Chong, "Comprehensive FDTD modeling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004).
[CrossRef] [PubMed]

2003 (3)

K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003).
[CrossRef]

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Phys. Rev. B 68, 193205 (2003).
[CrossRef]

2002 (5)

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

F. Galisteo Lopez and W. L. Vos, "Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder," Phys. Rev. E 66, 036616 (2002).
[CrossRef]

M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002)
[CrossRef]

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, "Waveguides of defect chains in photonic crystals," Phys. Rev. B 65, 235201 (2002).
[CrossRef]

2001 (3)

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

V. Yannopapas, N. Stefanou, and A. Modinos, "Effects of stacking faults on the optical properties of inverted opals," Phys. Rev. Lett. 86, 4811-4814 (2001).
[CrossRef] [PubMed]

2000 (2)

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Z.-Y. Li and Z.-Q. Zhang, "Fragility of photonic band gaps in inverse-opal photonic crystals," Phys. Rev. B 62, 1516-1519 (2000).
[CrossRef]

1999 (1)

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

1998 (2)

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896 (1998).
[CrossRef]

Abram, R. A.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
[CrossRef]

Adawi, A. D.

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

Albert, J. P.

M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002)
[CrossRef]

Allard, M.

M. Allard and E. H. Sargent, "Impact of polydispersity on light propagation in colloidal photonic crystals," Appl. Phys. Lett. 85, 5887-5889 (2004).
[CrossRef]

Andreani, L. C.

Astratov, V. N.

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Baryshev, A. V.

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Beggs, D. M.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
[CrossRef]

Benisty, H.

Blanco, A.

A. Blanco and C. López, "Silicon onion-layer nanostructures arranged in three dimensions," Adv. Mater. 18, 1593-1597 (2006).
[CrossRef]

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

Bo, X.

Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Bogomolov, V. N.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Borel, P. I.

Brand, S.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
[CrossRef]

Braun, P. V.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 3, 2222-2226 (2008).

Busch, K.

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896 (1998).
[CrossRef]

Cassagne, D.

M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002)
[CrossRef]

Castillo-Martinez, E.

E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005).
[CrossRef]

Chan, C. T.

K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003).
[CrossRef]

Chong, H. M. H.

Christensen, C.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

Chutinan, A.

A. Chutinan and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E 71, 026605 (2005).
[CrossRef]

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

Colvin, V.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005).
[CrossRef]

Fan, S.

V. Lousse and S. Fan, "Waveguides in inverted opal photonic crystals," Opt. Express 14, 866-78 (2006).
[CrossRef] [PubMed]

V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161113 (2006).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorder," Opt. Lett. 29, 2782-2784 (2004).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Ferrini, R.

Forchel, A.

Frandsen, L. H.

Fricker, S.

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

Galisteo Lopez, F.

F. Galisteo Lopez and W. L. Vos, "Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder," Phys. Rev. E 66, 036616 (2002).
[CrossRef]

Gaponenko, S. V.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Garcia-Santamaria, F.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 3, 2222-2226 (2008).

Gerace, D.

Harpoth, A.

Ho, K. M.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

Houdre, R.

Ibisate, M.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

Jin, Y.

Y. Jin, C. A. Leatherdale, and D. J. Norris, "Tailoring air defects in self-assembled photonic bandgap crystals," Adv. Mater. 17, 1908-1911 (2005).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

John, S.

A. Chutinan and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E 71, 026605 (2005).
[CrossRef]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896 (1998).
[CrossRef]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Juarez, B. H.

E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005).
[CrossRef]

Juodkazis, S.

Kaliteevski, M. A.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
[CrossRef]

M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002)
[CrossRef]

Kalosha, I. I.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Kamp, M.

Kaplyanskii, A. A.

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Karimov, O. Z.

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Kilic, O.

Kim, S.

Koenderink, A. F.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
[CrossRef]

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

Kristensen, M.

Kwan, K-C.

K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003).
[CrossRef]

Lagendijk, A.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
[CrossRef]

Lavrinenko, A.

Leatherdale, C. A.

Y. Jin, C. A. Leatherdale, and D. J. Norris, "Tailoring air defects in self-assembled photonic bandgap crystals," Adv. Mater. 17, 1908-1911 (2005).
[CrossRef]

Leuenberger, D.

Li, Z. Y.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

Li, Z.-Y.

Z.-Y. Li and Z.-Q. Zhang, "Fragility of photonic band gaps in inverse-opal photonic crystals," Phys. Rev. B 62, 1516-1519 (2000).
[CrossRef]

Lidorkis, E.

M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004).
[CrossRef]

Limonov, M. F

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Lopez, C.

E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005).
[CrossRef]

Lopez, J. C.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

López, C.

A. Blanco and C. López, "Silicon onion-layer nanostructures arranged in three dimensions," Adv. Mater. 18, 1593-1597 (2006).
[CrossRef]

Lousse, V.

V. Lousse and S. Fan, "Waveguides in inverted opal photonic crystals," Opt. Express 14, 866-78 (2006).
[CrossRef] [PubMed]

V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161113 (2006).
[CrossRef]

Maeda, K.

Manzaranes Martinez, J.

M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002)
[CrossRef]

Mesequer, F.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

Misawa, H.

Mittleman, D.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005).
[CrossRef]

Mizeikis, V.

Modinos, A.

V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Phys. Rev. B 68, 193205 (2003).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, "Waveguides of defect chains in photonic crystals," Phys. Rev. B 65, 235201 (2002).
[CrossRef]

V. Yannopapas, N. Stefanou, and A. Modinos, "Effects of stacking faults on the optical properties of inverted opals," Phys. Rev. Lett. 86, 4811-4814 (2001).
[CrossRef] [PubMed]

Muehlmeier, J.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

Niemi, T.

Nikolaev, V. V.

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
[CrossRef]

Nishijima, Y.

Noda, S.

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

Norris, D.

Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Norris, D. J.

Y. Jin, C. A. Leatherdale, and D. J. Norris, "Tailoring air defects in self-assembled photonic bandgap crystals," Adv. Mater. 17, 1908-1911 (2005).
[CrossRef]

Palacios-Lidon, E.

E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005).
[CrossRef]

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

Peter, Y.-A.

Petrov, E. P.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

Pusey, P. N.

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

Rengarajan, R.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005).
[CrossRef]

Rich, C.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005).
[CrossRef]

Rinne, S. A.

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 3, 2222-2226 (2008).

Sanchez-Dehesa, J.

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

Sargent, E. H.

M. Allard and E. H. Sargent, "Impact of polydispersity on light propagation in colloidal photonic crystals," Appl. Phys. Lett. 85, 5887-5889 (2004).
[CrossRef]

Sell, C.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

Shin, J.

V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161113 (2006).
[CrossRef]

Skolnick, M. S.

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

Solgaard, O.

Stefanou, N.

V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Phys. Rev. B 68, 193205 (2003).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, "Waveguides of defect chains in photonic crystals," Phys. Rev. B 65, 235201 (2002).
[CrossRef]

V. Yannopapas, N. Stefanou, and A. Modinos, "Effects of stacking faults on the optical properties of inverted opals," Phys. Rev. Lett. 86, 4811-4814 (2001).
[CrossRef] [PubMed]

Sturm, J. C.

Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Sudbø, A. S.

Suh, W.

Tanimura, T.

Thorhauge, M.

Tuttle, G.

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

Ueno, K.

Vlasov, Y. A.

Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Vlasov, Yu. A.

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Vos, W. L.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
[CrossRef]

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

F. Galisteo Lopez and W. L. Vos, "Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder," Phys. Rev. E 66, 036616 (2002).
[CrossRef]

Whittaker, D. M.

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

Yanik, M. F.

Yannopapas, V.

V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Phys. Rev. B 68, 193205 (2003).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, "Waveguides of defect chains in photonic crystals," Phys. Rev. B 65, 235201 (2002).
[CrossRef]

V. Yannopapas, N. Stefanou, and A. Modinos, "Effects of stacking faults on the optical properties of inverted opals," Phys. Rev. Lett. 86, 4811-4814 (2001).
[CrossRef] [PubMed]

Zhang, X.

K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003).
[CrossRef]

Zhang, Z.-Q.

K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003).
[CrossRef]

Z.-Y. Li and Z.-Q. Zhang, "Fragility of photonic band gaps in inverse-opal photonic crystals," Phys. Rev. B 62, 1516-1519 (2000).
[CrossRef]

Adv. Mater. (2)

A. Blanco and C. López, "Silicon onion-layer nanostructures arranged in three dimensions," Adv. Mater. 18, 1593-1597 (2006).
[CrossRef]

Y. Jin, C. A. Leatherdale, and D. J. Norris, "Tailoring air defects in self-assembled photonic bandgap crystals," Adv. Mater. 17, 1908-1911 (2005).
[CrossRef]

Appl. Phys. Lett. (7)

V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161113 (2006).
[CrossRef]

C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004).
[CrossRef]

E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002).
[CrossRef]

A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999).
[CrossRef]

M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004).
[CrossRef]

M. Allard and E. H. Sargent, "Impact of polydispersity on light propagation in colloidal photonic crystals," Appl. Phys. Lett. 85, 5887-5889 (2004).
[CrossRef]

K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003).
[CrossRef]

J. Appl. Phys. (1)

E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005).
[CrossRef]

Nat. Photonics (1)

S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 3, 2222-2226 (2008).

Nature (1)

Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (8)

M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006).
[CrossRef]

M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002)
[CrossRef]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005).
[CrossRef]

Z.-Y. Li and Z.-Q. Zhang, "Fragility of photonic band gaps in inverse-opal photonic crystals," Phys. Rev. B 62, 1516-1519 (2000).
[CrossRef]

V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Phys. Rev. B 68, 193205 (2003).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, "Waveguides of defect chains in photonic crystals," Phys. Rev. B 65, 235201 (2002).
[CrossRef]

Phys. Rev. E (5)

A. Chutinan and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E 71, 026605 (2005).
[CrossRef]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896 (1998).
[CrossRef]

F. Galisteo Lopez and W. L. Vos, "Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder," Phys. Rev. E 66, 036616 (2002).
[CrossRef]

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005).
[CrossRef]

Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003).
[CrossRef] [PubMed]

V. Yannopapas, N. Stefanou, and A. Modinos, "Effects of stacking faults on the optical properties of inverted opals," Phys. Rev. Lett. 86, 4811-4814 (2001).
[CrossRef] [PubMed]

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998).
[CrossRef]

Other (4)

W. Mächtle and L. Börger, Analytical Ultracentrifugation of Polymers and Nanoparticles (Springer, 2006).

H. Cölfen, Analytical Ultracentrifugation of Nanoparticles, in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, 2004), p. 67-88.

C. Kittel, Introduction to Solid State Physics (Wiley & Sons, New York, 1971).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

The dashed green curve: the differential size distribution of polymer spheres from analytical ultracentrifugation, integrating over ~109 particles in the original diluted suspension. The black solid curve: the best normal fit (σ ≈ 0.02) to the skewed distribution

Fig. 2.
Fig. 2.

The skewed distribution realized by 930 random numbers generated by the FORTRAN program and divided into 147 bins. Inset shows comparison of the skewed and simulated integral distributions.

Fig. 3.
Fig. 3.

Averaged transmission spectra Γ-L direction for 15 layers of Si inverted opal with deviations in radius. Mean standard deviations of radius imperfections are shown in the specification table. Transmission spectrum for the sample with the perfect FCC lattice is shown by the black line; (b): zooming in the PBG region.

Fig. 4.
Fig. 4.

Averaged transmission spectra in Γ- L direction for 15 layers of Si inverted opal with deviations in spheres positions and/or radii: (a) σ = 0.03, (b) σ = 0.05. Transmission spectrum for the sample with the perfect FCC lattice is shown by the black line

Fig. 5.
Fig. 5.

Averaged transmission spectra in Γ- L direction for 15 layers of Si inverted opal with deviations in spheres positions and radii. Mean standard deviations of coordinate and radii imperfections are shown in the specification table Transmission spectrum for perfect PhC is shown in black.

Fig. 6.
Fig. 6.

Layout of the calculation scheme. The sphere from inverted opal is 10a in diameter. A point source consisting of two orthogonal dipoles is in the center. White circles symbolize detectors.

Fig. 7.
Fig. 7.

Normalized intensity spectra for fields emerged from the inverted opal sphere of radius r = 5a in four highly symmetric directions and for homogeneously distributed detectors, for details see specification table in the charts: (a) titania (n = 2.7); (b) (silicon n = 3.476).

Fig. 8.
Fig. 8.

Normalized intensity spectra for fields emerged from the inverted opal sphere with the normal distribution of s&s deviations and the skewed distribution of radii, see the specification tables for details, a) in Γ-X direction; b) in Γ-K direction, c) in Γ-L direction; d) in Γ-W direction. The spectra for the perfect PhC in correspondent direction are shown in black lines.

Fig. 9.
Fig. 9.

Transmission through Γ-K CPCW, r = 0.354a (blue curve), perfect PhC (black curve) and in the same set up in air (red line with squares).

Fig. 10.
Fig. 10.

Normalized transmission spectra for Γ-K waveguides with deviations in radii and positions of spheres. Mean standard deviations and types of imperfections are shown in the table. Transmission spectra for the undistorted waveguides are shown by the solid black line (s&s=0.0); transmission of the perfect FCC sample is marked by the dashed black line. a) CPCW (r = 0.45a, thickness 7.1a); b) CoS (r = 0.49a, thickness 7.1a)

Fig. 11.
Fig. 11.

Normalized transmission spectra for Γ- L waveguides with deviations in radii and positions of spheres. Mean standard deviations and types of imperfections are shown in the table. Transmission spectra for the undistorted waveguides are shown by the solid black line (s&s=0.0); transmission of the perfect FCC sample is marked by the dashed black line. a) CPCW (r = 0.42a, thickness 15 layers); b) CoS (r = 0.55a, thickness 15 layers)

Fig. 12.
Fig. 12.

Normalized transmission spectra for the Γ- X CPCW (r = 0.45a, thickness 10a) with deviations in radii and positions of spheres. Mean standard deviations and types of imperfections are shown in the table. Transmission spectra for the undistorted waveguides are shown by the solid black line (s&s=0.0); transmission of the perfect FCC sample is marked by the dashed black line.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y1=σInx1cos2πx2,y2=σInx1sin2πx2
p(y)dy=12πσexp(y22σ2)dy.
Fr=F0+yr0
d=18ηsΔρ,

Metrics