Abstract

The physical mechanism of the large polarization rotation effect in direct transmission of the all-dielectric artificially chiral nanogratings is explored by experiment and numerical analysis. It is shown that the different coupling of right- and left-circularly polarized components of the normally incident light to the leaky guided modes or Fabry-Pérot resonance modes lead to the enhanced circular dichroism, resulting in the giant polarization rotation effect. The mode profile and local field calculations demonstrate intuitive images of the different coupling performance at resonances.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
    [CrossRef] [PubMed]
  2. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
    [CrossRef]
  3. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  4. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
    [CrossRef]
  5. M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
    [CrossRef] [PubMed]
  6. W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
    [CrossRef]
  7. W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with twodimensional chirality," J. Opt. A: Pure Appl. Opt. 8, 878-890 (2006).
    [CrossRef]
  8. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A. 76, 023811 (2007).
    [CrossRef]
  9. J. Lee and C. T. Chan, "Polarization gaps in spiral photonic crystals," Opt. Express 13, 8083-8088 (2005).
    [CrossRef] [PubMed]
  10. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
    [CrossRef]
  11. M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
    [CrossRef] [PubMed]
  12. X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
    [CrossRef]
  13. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
    [CrossRef] [PubMed]
  14. M. Nevi`ere and M. Popov, Light Propagation in Periodic Media (Marcel Dekker, New York, 2003).
  15. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
    [CrossRef]
  16. S. Peng and G. M. Morris, "Resonant scattering from two-dimensional gratings," J. Opt. Soc. Am. A 13, 993-1005 (1996).
    [CrossRef]
  17. B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
    [CrossRef]
  18. W. N. Herman, "Polarization eccentricity of the transverse field for modes in chiral core planar waveguides," J. Opt. Soc. Am. A 18, 2806-2818 (2001).
    [CrossRef]
  19. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Norwood, Mass., 1994).
  20. H. G. Unger, Planar optical waveguides and fibres (Oxford, Clarendon, 1977).
  21. G. Hernandez, Fabry-P’erot Interferometers (Cambridge, New York, 1986).

2008 (2)

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

2007 (5)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
[CrossRef]

M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A. 76, 023811 (2007).
[CrossRef]

2006 (1)

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with twodimensional chirality," J. Opt. A: Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

2005 (4)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

J. Lee and C. T. Chan, "Polarization gaps in spiral photonic crystals," Opt. Express 13, 8083-8088 (2005).
[CrossRef] [PubMed]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

2003 (2)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

2001 (1)

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

1996 (1)

Bagnall, D. M.

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with twodimensional chirality," J. Opt. A: Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

Bai, B.

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A. 76, 023811 (2007).
[CrossRef]

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Chan, C. T.

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

Decker, M.

M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
[CrossRef]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
[CrossRef]

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Herman, W. N.

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

Karvinen, P.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Klein, M. W.

Konishi, K.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

Kuwata-Gonokami, M.

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Lee, J.

Li, L.

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

Linden, S.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007).
[CrossRef] [PubMed]

Meng, X.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

Morris, G. M.

Papakostas, A.

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

Peng, S.

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Potts, A.

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with twodimensional chirality," J. Opt. A: Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Svirko, Y.

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A. 76, 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

Thiel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
[CrossRef]

M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
[CrossRef] [PubMed]

Turunen, J.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express 16, 7189-7196 (2008).
[CrossRef] [PubMed]

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A. 76, 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

Vahimaa, P.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A. 76, 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

von Freymann, G.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
[CrossRef]

M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt. Lett. 32, 2547-2549 (2007).
[CrossRef] [PubMed]

Wegener, M.

Zhang, W.

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with twodimensional chirality," J. Opt. A: Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007).
[CrossRef]

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials," Appl. Phys. Lett. 86, 231905 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

W. Zhang, A. Potts, and D. M. Bagnall, "Giant optical activity in dielectric planar metamaterials with twodimensional chirality," J. Opt. A: Pure Appl. Opt. 8, 878-890 (2006).
[CrossRef]

B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A. (1)

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Phys. Rev. A. 76, 023811 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90,107404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Thin Solid Films (1)

X. Meng, B. Bai, P. Karvinen, K. Konishi, J. Turunen, Y. Svirko, and M. Kuwata-Gonokami, "Experimental realization of all-dielectric planar chiral metamaterials with large optical activity in direct transmission," Thin Solid Films 516, 8745-8748 (2008).
[CrossRef]

Other (4)

M. Nevi`ere and M. Popov, Light Propagation in Periodic Media (Marcel Dekker, New York, 2003).

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Norwood, Mass., 1994).

H. G. Unger, Planar optical waveguides and fibres (Oxford, Clarendon, 1977).

G. Hernandez, Fabry-P’erot Interferometers (Cambridge, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Measured and calculated transmittance, polarization rotation angle θ and ellipticity angle χ of the directly transmitted light in the dielectric ACNG. The arrows indicate the resonances caused by guided-mode coupling (denoted by CvM) or Fabry-Pérot effect (denoted by FP) on the calculated spectrum, by referring to Fig. 2.

Fig. 2.
Fig. 2.

Dispersion curves of LEP and REP modes (denoted by LM and RM , respectively, with M = 0,1,2,3,4 the mode number) in the effective planar chirowaveguide. ns is the refractive index of the substrate.

Fig. 3.
Fig. 3.

Mode profiles in the TiO2 waveguide layer and gammadion layer along the normal direction of the ACNG sample at different resonances CνM . The electric field amplitude E (averaged in the grating plane) is normalized with respect to the incident electric field amplitude. For clarity of illustration, only half of the modes are demonstrated, in which the C 10 mode is scaled down in half.

Fig. 4.
Fig. 4.

(a) Measured transmittance of RCP and LCP waves. (b) Comparison of the directly measured polarization angles with those derived from the CD measurement. (c) Calculated (with κ = 0.005) spectra of ellipticity and a ±.

Fig. 5.
Fig. 5.

Amplitude (normalized with the incident field amplitude) and phase (in radian) distribution of E in one unit cell of the grating pattern in the lower interface of the waveguide layer. The field is calculated (with κ = 0.005) for resonances at C 12 (955nm) and C 24 (622.5nm) under RCP (the left column) and LCP (the right colum) illuminations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n2(λ)=1+3.0941(215.5λ)2,
ng=fnt2+(1f)nc2 ,
D=ng2(E+γ×E).
β±=Km2+n2(K=2π/d)
θ=12(ϕ+ϕ),tanχ=a+aa++a.

Metrics