Abstract

A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. H. E. Weste and D. Harris, CMOS VLSI Design: a Circuits and Systems Perspective, 3rd ed. (Addison-Wesley, Boston, 2004), pp. 196-218.
  2. A. Shacham, K. Bergman, and L. P. Carloni, "On the design of a photonic network-on-chip," in Proceedings of the First International Symposium on Network-on-Chip (NOCS’07) (IEEE Computer Society Press, 2007), pp. 53-64.
    [CrossRef]
  3. I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
    [CrossRef]
  4. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical network," Nature Photonics 2, 242-246 (2008).
    [CrossRef]
  5. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics 1, 641-648 (2007).
    [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  7. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10502 (2000).
    [CrossRef]
  8. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  9. H. Kim, J. Hahn, and B. Lee, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008).
    [CrossRef] [PubMed]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008).
    [CrossRef]
  11. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004).
    [CrossRef] [PubMed]
  12. G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211-1221 (2007).
    [CrossRef] [PubMed]
  13. Z. Sun and D. Zeng, "Coupling of surface plasmon waves in metal/dielectric gap waveguides and single-interface waveguides," J. Opt. Soc. Am. B 24, 2883-2887 (2007).
    [CrossRef]
  14. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leiner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
    [CrossRef] [PubMed]
  15. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
    [CrossRef]
  16. M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).
  17. P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997).
    [CrossRef]
  18. H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007).
    [CrossRef]
  19. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972)
    [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, Hoboken, NJ, 2007), pp. 289-324.
  21. E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986).
    [CrossRef]
  22. E. A. J. Marcatili, L.L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692-1693 (1986).
    [CrossRef]
  23. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, "Plasmon-polariton nano-strip resonators: from visible to infra-red," Opt. Express 16, 6867-6876 (2008).
    [CrossRef] [PubMed]
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, Hoboken, NJ, 2007), pp. 1-37.
  25. S. Sidorenko and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007).
    [CrossRef] [PubMed]
  26. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  27. P. Nordlander and F. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Appl. Phys. B 84, 35-41 (2006).
    [CrossRef]
  28. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

2008

2007

2006

P. Nordlander and F. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Appl. Phys. B 84, 35-41 (2006).
[CrossRef]

2004

2003

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2001

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
[CrossRef]

2000

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10502 (2000).
[CrossRef]

1997

1995

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).

1986

E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986).
[CrossRef]

E. A. J. Marcatili, L.L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692-1693 (1986).
[CrossRef]

1981

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

Alferness, R. C.

E. A. J. Marcatili, L.L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692-1693 (1986).
[CrossRef]

Aussenegg, F. R.

Baehr-Jones, T.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10502 (2000).
[CrossRef]

Bozhevolnyi, S. I.

Buhl, L.L.

E. A. J. Marcatili, L.L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692-1693 (1986).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

Dambre, J.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Fan, S.

Gaffiot, F.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

Galler, N.

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008).
[CrossRef]

Grann, E. B.

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical network," Nature Photonics 2, 242-246 (2008).
[CrossRef]

Hahn, J.

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics 1, 641-648 (2007).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Hochberg, M.

Hohenau, A.

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

Kim, H.

Koller, D. M.

Krenn, J. R.

Lal, S.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics 1, 641-648 (2007).
[CrossRef]

Lalanne, P.

Le, F.

P. Nordlander and F. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Appl. Phys. B 84, 35-41 (2006).
[CrossRef]

Lee, B.

Lee, I.-M.

Leiner, A.

Link, S.

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics 1, 641-648 (2007).
[CrossRef]

Marcatili, E.

E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, L.L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692-1693 (1986).
[CrossRef]

Martin, O. J. F.

Moharam, M. G.

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
[CrossRef]

Nordlander, P.

P. Nordlander and F. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Appl. Phys. B 84, 35-41 (2006).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

O’Connor, I.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008).
[CrossRef]

Pommet, D. A.

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Scherer, A.

Sidorenko, S.

Søndergaard, T.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008).
[CrossRef]

Stroobandt, D.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

Sun, Z.

Tissafi-Drissi, F.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

Valle, G. D.

van Campenhout, J.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

van Thourhout, D.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

Veronis, G.

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical network," Nature Photonics 2, 242-246 (2008).
[CrossRef]

Walker, C.

Wilde, M. D.

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical network," Nature Photonics 2, 242-246 (2008).
[CrossRef]

Zeng, D.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008).
[CrossRef]

Appl. Phys. B

P. Nordlander and F. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Appl. Phys. B 84, 35-41 (2006).
[CrossRef]

Appl. Phys. Lett.

E. A. J. Marcatili, L.L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692-1693 (1986).
[CrossRef]

IEEE J. Quantum Electron.

E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986).
[CrossRef]

IEEE Trans. VLSI Systems

I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007).
[CrossRef]

J. Opt. Soc. Am. A

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
[CrossRef]

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).

P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997).
[CrossRef]

H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Nature Photonics

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical network," Nature Photonics 2, 242-246 (2008).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics 1, 641-648 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972)
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10502 (2000).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Other

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, Hoboken, NJ, 2007), pp. 1-37.

E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, Hoboken, NJ, 2007), pp. 289-324.

N. H. E. Weste and D. Harris, CMOS VLSI Design: a Circuits and Systems Perspective, 3rd ed. (Addison-Wesley, Boston, 2004), pp. 196-218.

A. Shacham, K. Bergman, and L. P. Carloni, "On the design of a photonic network-on-chip," in Proceedings of the First International Symposium on Network-on-Chip (NOCS’07) (IEEE Computer Society Press, 2007), pp. 53-64.
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (3688 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of a floating dielectric slab interconnection between two air-based single metal-dielectric interface SPP waveguides. Each red drawing with number indicates corresponding eigenmode or scattered wave in given geometry. (b) (Media 1) The amplitude distribution of the magnetic field (Hy ) of the floating dielectric slab interconnection; with tgap =150 nm, tslab =250 nm, Loverlap =600 nm, and Lbridge =5 μm, respectively.

Fig. 2.
Fig. 2.

(a) The transmission efficiency (Teff ) as a function of the length of the slab bridge (Lbridge ), and the thickness of the slab bridge (tslab ). Each black arrowed line marked with capitals in the figure indicates the sweeping interval of the plot in (b) and (c), and the dashed line indicates the boundary of the single mode and multi mode regimes. (b) Teff as a function of tslab , for a given Lbridge . The red dashed line and the blue solid line correspond to the two different cases of slab bridge length denoted by A and B in (a), and the black broken line corresponds to the normalized-to-fit value of the squared overlap integral of the SPP mode and the fundamental slab mode. (c) Teff as a function of Lbridge , for a given tslab . The red solid line and the blue dashed line correspond to the single mode case (C) and the multi mode (D) case, respectively. (d) Amplitude distributions of the magnetic field at the out-coupling part of the interconnection. Each corresponds to the case of tslab =250 nm (①), the minimum (②) and maximum transmission (③) with tslab =500 nm. Throughout the figures, all other structural parameters are fixed as Loverlap =600 nm, and tgap =150 nm.

Fig. 3.
Fig. 3.

(a) Teff as a function of Lbridge and tslab , when the sweeping interval of Lbridge and tslab is 0~10 μm and 0~1000 nm, respectively. (b) Teff as a function of Lbridge , in the case of a relatively short slab bridge (upper figure), and the long slab bridge (lower figure). In both cases, tslab is 250 nm. Throughout the figures, all other structural parameters are set as Loverlap =600 nm and tgap =100 nm.

Fig. 4.
Fig. 4.

Teff as a function of Loverlap and tgap for the single wave-coupling structure only and the whole interconnection structure. We show Teff for the single wave-coupling structure when (a) tslab =250 nm and (b) tslab =450 nm. The inset of (a) represents the schematics of the single wavecoupling structure. Like above, we illustrate Teff for the whole structure when (c) tslab =250 nm and (d) tslab =450 nm. The inset of (c) represents the schematics of the whole interconnection structure. Through (c) and (d), the length of the slab bridge is held to 1 mm. The circles in (b) and (d) are marked in same positions. Throughout all figures, the low-gap interference is marked with dotted rectangles.

Fig. 5.
Fig. 5.

(a) The amplitude distributions of the magnetic field (Hy ) of the symmetric (red dashed line) and the antisymmetric hybrid (blue solid line) modes. Each red and blue shaded area corresponds to the metal surface and dielectric slab, respectively, and the white region corresponds to the air. (b) The effective indices of the hybrid modes with respect to tgap , for tslab =250 nm (red solid line), 500 nm (green dash-dot line), 750 nm (blue dashed line), and 1000 nm (magenta dotted line). The effective indices of the SPP mode of the metal-air and metal-dielectric single interface are given in black dashed lines. Throughout the figures, Loverlap =600 nm and Lbridge =1 mm.

Fig. 6.
Fig. 6.

Teff as a function of tslab and tgap , for both short and long slab bridges. The length of the slab bridge is (a) Lbridge =10 μm (short) and (b) Lbridge =1 mm (long). For both cases, the length of the overlapping region is Loverlap =600 nm each. The dashed line in each figure divides the single mode regime and the multi-mode regime.

Fig. 7.
Fig. 7.

Overlap integrals of the SPP mode and the slab mode with respect to tgap , for tslab =250 nm (red solid line), 500 nm (green dash-dot line), 750 nm (blue dashed line), and 1000 nm (black dotted line). Every overlap integral value is normalized with respect to the maximum overlap integral in the case of tslab =250 nm.

Fig. 8.
Fig. 8.

(a) Schematic diagram of the practical example of a floating dielectric slab interconnection between two air-based single metal-dielectric interface SPP waveguides. (b) Teff of (a) as a function of Lbridge , when values of other structural parameters are tslab =230 nm, Loverlap =600 nm, and tgap =75 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tc,M=Mλ02NA ,
Lbridge2πλ0neff=mπ,
Lbridge2πλ0(neff,0neff,1)=2mπ,
OPL=neff·L,

Metrics