Abstract

We demonstrate optically pumped continuous-wave photonic band-edge microlasers on a two-dimensional photonic crystal slab. Lasing was observed at a photonic band-edge, where the group velocity was significantly small near the K point of the band structure having a triangular lattice. Lasing was achieved by using a quantum dot gain material, which resulted in a significant decrease in the laser threshold, compared with photonic band-edge lasers using quantum well gain material. Extremely low laser thresholds of ~80 nW at 6 K was achieved. Lasing was observed in a defect-free photonic crystal as small as ~7 μm square.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
    [CrossRef] [PubMed]
  2. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
    [CrossRef]
  3. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  4. S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-127404-4 (2006).
    [CrossRef] [PubMed]
  5. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14,6308-6315 (2006).
    [CrossRef] [PubMed]
  6. M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
    [CrossRef]
  7. K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
    [CrossRef]
  8. M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 87,1325-1327 (2001).
    [CrossRef]
  9. M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
    [CrossRef]
  10. S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
    [CrossRef] [PubMed]
  11. C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
    [CrossRef]
  12. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004).
    [CrossRef] [PubMed]
  13. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express,  14, 9269-9276 (2006).
    [CrossRef]
  14. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K.-H. Lee, R. Bravive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, "Continuous-wave operation of photonic band-edge laser near 1.55 μm on silicon wafer," Opt. Express 15, 7551-7556 (2007).
    [CrossRef] [PubMed]
  15. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
    [CrossRef]
  16. S.-H. Kwon, S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004).
    [CrossRef] [PubMed]
  17. N. Kumagai, K. Watanabe, M. Nomura, Y. Ota, and Y. Arakawa, "InAs quantum dots by high growth-temperature and high growth-rate for single-dot optical study," 8th International Conference on Physics of Light-Matter Coupling in Nanostructures, WeP-19, p. 74, Tokyo (2008).
  18. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B,  75, 195313 (2007).
    [CrossRef]
  19. G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett.,  60, 304-306 (1992).
    [CrossRef]
  20. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, "Achievement of ultra-low threshold excitation power (8 nW) in a nearly-single quantum dot nanocavity laser," Conference on lasers and Electro-Optics, p. 103, San Jose, USA, May 4-9, 2008.
  21. M. Grundmann and D. Bimberg, "Gain and threshold of quantum dot lasers: Theory and comparison to experiments," Jpn. J. Appl. Phys. 36, 4181-4187 (1997).
    [CrossRef]
  22. Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
    [CrossRef]

2007 (2)

2006 (2)

2004 (3)

2002 (3)

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

2001 (2)

S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 87,1325-1327 (2001).
[CrossRef]

1999 (4)

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
[CrossRef]

1997 (1)

M. Grundmann and D. Bimberg, "Gain and threshold of quantum dot lasers: Theory and comparison to experiments," Jpn. J. Appl. Phys. 36, 4181-4187 (1997).
[CrossRef]

1992 (1)

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett.,  60, 304-306 (1992).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

Albert, J. P.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Arakawa, Y.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B,  75, 195313 (2007).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14,6308-6315 (2006).
[CrossRef] [PubMed]

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Beaudoin, G.

Ben Bakir, B.

Bimberg, D.

M. Grundmann and D. Bimberg, "Gain and threshold of quantum dot lasers: Theory and comparison to experiments," Jpn. J. Appl. Phys. 36, 4181-4187 (1997).
[CrossRef]

Björk, G.

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett.,  60, 304-306 (1992).
[CrossRef]

Bouchoule, S.

Bravive, R.

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Chen, H.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Chutianan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Deppe, D. G.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Di Cioccio, L.

Dodabalapr, A.

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

d'Yerville, M. L.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Fedeli, J. M.

Gendry, M.

Gratiet, L. L.

Grundmann, M.

M. Grundmann and D. Bimberg, "Gain and threshold of quantum dot lasers: Theory and comparison to experiments," Jpn. J. Appl. Phys. 36, 4181-4187 (1997).
[CrossRef]

Guilet, S.

Haus, J. W.

K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
[CrossRef]

Imada, M.

D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

Inoue, K.

K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
[CrossRef]

Ishida, S.

Iwamoto, S.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B,  75, 195313 (2007).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14,6308-6315 (2006).
[CrossRef] [PubMed]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Karle, T. J.

Kawata, J.

K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
[CrossRef]

Kim, J.-S.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S.-H. Kwon, S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

Kim, S.-K.

Kumagai, N.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B,  75, 195313 (2007).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14,6308-6315 (2006).
[CrossRef] [PubMed]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S.-H. Kwon, S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, K.-H.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S.-H. Kwon, S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, Y.-J.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Letartre, X.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express,  14, 9269-9276 (2006).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Levenson, A.

Meier, M.

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Monat, C.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Monnier, P.

Murata, M.

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

Nakata, Y.

Nalamasu, L.

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Noda, S.

D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

Nomura, M.

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B,  75, 195313 (2007).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14,6308-6315 (2006).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 87,1325-1327 (2001).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Ohnishi, D.

Okano, T.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Raineri, F.

Raj, R.

Regreny, P.

Regreny, R.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Sagnes, I.

Sakaki, H.

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

Sakoda, K.

K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
[CrossRef]

Sasada, M.

K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
[CrossRef]

Sasaki, G.

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

Scherer, A.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express,  14, 9269-9276 (2006).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Shchekin, O. B.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Suzuki, H.

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 87,1325-1327 (2001).
[CrossRef]

Talneau, A.

Tamamura, T.

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 87,1325-1327 (2001).
[CrossRef]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Tokuda, T.

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

Vecchi, G.

Viktorovitch, P.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express,  14, 9269-9276 (2006).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Watanabe, K.

Yacomotti, A.

Yamamoto, Y.

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett.,  60, 304-306 (1992).
[CrossRef]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Zussy, M.

Appl. Phys. Lett. (7)

M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 87,1325-1327 (2001).
[CrossRef]

M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett.,  60, 304-306 (1992).
[CrossRef]

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982).
[CrossRef]

Electron. Lett. (1)

T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (2)

K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999).
[CrossRef]

M. Grundmann and D. Bimberg, "Gain and threshold of quantum dot lasers: Theory and comparison to experiments," Jpn. J. Appl. Phys. 36, 4181-4187 (1997).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (1)

M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B,  75, 195313 (2007).
[CrossRef]

Science (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Other (3)

S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-127404-4 (2006).
[CrossRef] [PubMed]

N. Kumagai, K. Watanabe, M. Nomura, Y. Ota, and Y. Arakawa, "InAs quantum dots by high growth-temperature and high growth-rate for single-dot optical study," 8th International Conference on Physics of Light-Matter Coupling in Nanostructures, WeP-19, p. 74, Tokyo (2008).

M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, "Achievement of ultra-low threshold excitation power (8 nW) in a nearly-single quantum dot nanocavity laser," Conference on lasers and Electro-Optics, p. 103, San Jose, USA, May 4-9, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning electron micrograph of a two-dimensional Ph band-edge laser with InAs QD gain material. Efficient distributed feedback at a photonic band-edge causes lasing in this defect-free PhC microstructure.

Fig. 2.
Fig. 2.

(a) Band structure of the TE-like mode of a two-dimensional PhC with r/a = 0.30 and d/a = 0.67. (b) Magnetic field distribution normal to the slab of the band-edge mode at a/λ ~ 0.255 and the K point calculated using the FDTD method. (c) Spatial Fourier spectrum of the in-plane electric field of the band-edge mode. The circular and hexagonal white broken lines denote the air light line and the first Brillouin zone, respectively.

Fig. 3.
Fig. 3.

(a) Photoluminescence spectrum of PhC patterns with different periods of lattice at CW pumping of 1 μW and measured at 6 K. (b) Experimental and simulated band-edge mode wavelengths for the lasers with different lattice constants.

Fig. 4.
Fig. 4.

(a) Lasing spectrum of the optically pumped QD-based Ph band-edge laser at CW pumping of 1 μW and measured at 6 K. (b) Light-in versus light-out plot of the band-edge mode at 919.3 nm plotted on a log-log scale. The green broken lines denote a linear increase of an eye guide. The threshold pump power was ~80 nW, which was measured on the surface the sample. (c) Dependence of the linewidth on the pump power of the investigated band-edge mode. The linewidth shows typical lasing characteristic, which is observed in a microcavity laser.

Fig. 5.
Fig. 5.

(a) Lasing spectrum of the optically pumped QW-based Ph band-edge laser at quasi-CW (1 kHz, duty cycle: 1%) pumping of 1 mW and measured at 6 K. (b) Light-in versus light out plot of the QW-based band-edge mode at 901 nm plotted on the log-log scale. The threshold peak pump power is ~350 μW. (c) Dependence of the linewidth on the pump power of the band-edge mode. The linewidth reached a spectral resolution limit of ~20 pm of the detection system, which was sufficiently above the laser threshold.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g(ħω)=CgP(ħω,σE)[fc(ħω)fv(ħω)],
Cg=2πe2M2m02ε0cnωV0.
g(ħω)=NexNQDNQDCgP(ħω,σE).

Metrics