Abstract

In a wider and wider range of research and engineering activities, there is a growing interest for full-field techniques, featuring nanometric sensitivities, and able to be addressed to dynamic behaviors characterization. Speckle interferometry (SI) techniques are acknowledged as good candidates to tackle this challenge. To get rid of the intrinsic correlation length limitation and simplify the unwrapping step, a straightforward approach lies in the pixel history analysis. The need of increasing performances in terms of accuracy and computation speed is permanently demanding new efficient processing techniques. We propose in this paper a fast implementation of the Empirical Mode Decomposition (EMD) to put the SI pixel signal in an appropriate shape for accurate phase computation. As one of the best way to perform it, the analytic method based on the Hilbert transform (HT) of the so-transformed signal will then be reviewed. For short evaluation, a zero-crossing technique which exploits directly the extrema finding step of the EMD will be presented. We propose moreover a technique to discard the under-modulated pixels which yield wrong phase evaluation. This work is actually an attempt to elaborate a phase extraction procedure which exploits all the reliable information in 3D, – two space and one time coordinates –, to endeavor to make the most of SI raw data.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cf. Proceedings of the “Fringe” Conferences Series, as e.g.: W. Osten and W. Jüptner Eds., Elsevier (2001), W. Osten Ed., Springer (2005).
  2. K. Creath, Interferogram Analysis (Institute of Physics Publishing, Bristol, UK, 1993), Chap. 4.
  3. J. M. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993).
    [CrossRef] [PubMed]
  4. Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase-shifting,” Appl. Opt. 35, 5115–5121 (1996).
    [CrossRef]
  5. L. Bruno, “Global approach for fitting 2D interferometric data,” Opt. Express 15, 4835–4847 (2007).
    [CrossRef] [PubMed]
  6. E. Robin and V. Valle, “Phase demodulation method from a single fringe pattern based on correlation technique with a polynomial form,” Appl. Opt. 34, 7261–7269 (2005).
    [CrossRef]
  7. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-Transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  8. D.J. Bone, H. -A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2D Fourier transform,” Appl. Opt. 25, 1653–1660 (1986).
    [CrossRef] [PubMed]
  9. K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns -Part I,” J. Opt. Soc. Am. A 18, 1862–1881 (2001).
    [CrossRef]
  10. J. L. Marroquin, M. Rivera, S. Botello, R. Rodriguez–Vera, and M. Servin, “Regularization methods for processsing fringe-pattern images,” Appl. Opt. 38, 788–794 (1999).
    [CrossRef]
  11. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley-Interscience Publication, New-York, 1998).
  12. H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
    [CrossRef]
  13. M. Cherbuliez, P. Jacquot, and X. Colonna de Lega, “Wavelet processing of interferometric signals and fringe patterns,” Proc. SPIE 3813, 692–702 (1999).
    [CrossRef]
  14. V. D. Madjarova, H. Kadono, and S. Toyooka, “Dynamic speckle pattern interferometry (DESPI) phase analyses with temporal Hilbert transform,” Opt. Express 11, 617–623 (2003).
    [CrossRef] [PubMed]
  15. S. Equis, A. Baldi, and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” in Proceedings of the International Conference in Experimental Mechanics, E.E. Gdoutos, ed. (Springer, Dordrecht, The Netherlands, 2007), pp. 719–720 & CD–Rom.
  16. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
    [CrossRef]
  17. G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image ProcessingNSIP-03 (2003).
  18. N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
    [CrossRef]
  19. A. Federico and G. Kaufmann, “Evaluation of dynamic speckle activity using the empirical mode decomposition,” Opt. Commun. 267, 287–294 (2006).
    [CrossRef]
  20. F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition,” Opt. Commun. 275, 38–41 (2007).
    [CrossRef]
  21. S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” Strain (to be published).
  22. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill Book Company, 1965).
  23. E. Bedrosian, “A product theorem for Hilbert transforms,” Proc. IEEE 51, 868–869 (1963).
    [CrossRef]
  24. D. Vakman, “On the analytic signal, the Teager-Kaiser algorithm, and other methods for defining amplitude and frequency,” IEEE Trans. Sig. Proc. 44, 791–797 (1996).
    [CrossRef]
  25. B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal,” Proc. IEEE 80, 520–568 (1992).
    [CrossRef]
  26. M. LehmannDigital Speckle Pattern Interferometry and Related Techniques (John Wiley & Sons, Ltd, Chichester, 2001), Chap. 1.
  27. G. Rilling, P. Flandrin, and P. Gonçalves “On Empirical Mode Decomposition and its algorithms”, Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 (2003).
  28. K. Zeng and M. -X. He, “A simple boundary process technique for empirical mode decomposition,” IEEE Int. Geosci. Remote Sensing 6, 4258–4261 (2004).
  29. N. Stevenson, M. Mesbah, and B. Boashash, “A sampling limit for the empirical mode decomposition,” in Proceedings of International Symposium on Signal Processing and its Applications ISSPA–05, 647–650 (2005).
    [CrossRef]
  30. G. Rilling and P. Flandrin, “On the influence of sampling on the empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP–06 (2006).
    [CrossRef]
  31. http://perso.ens-lyon.fr/patrick.flandrin/publis.html
  32. G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Sig. Proc. 56, 85–95 (2008).
    [CrossRef]
  33. S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6841, 634138–1–634138–6 (2006).
    [CrossRef]
  34. E. Vikhagen, “Nondestructive testing by use of TV holography and deformation phase gradient calculation,” Appl. Opt. 29, 137–144 (1990).
    [CrossRef] [PubMed]
  35. W. An and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Lasers Eng. 40, 529–541 (2003).
    [CrossRef]
  36. www.qhull.org

2008 (1)

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Sig. Proc. 56, 85–95 (2008).
[CrossRef]

2007 (2)

L. Bruno, “Global approach for fitting 2D interferometric data,” Opt. Express 15, 4835–4847 (2007).
[CrossRef] [PubMed]

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition,” Opt. Commun. 275, 38–41 (2007).
[CrossRef]

2006 (3)

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6841, 634138–1–634138–6 (2006).
[CrossRef]

G. Rilling and P. Flandrin, “On the influence of sampling on the empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP–06 (2006).
[CrossRef]

A. Federico and G. Kaufmann, “Evaluation of dynamic speckle activity using the empirical mode decomposition,” Opt. Commun. 267, 287–294 (2006).
[CrossRef]

2005 (2)

N. Stevenson, M. Mesbah, and B. Boashash, “A sampling limit for the empirical mode decomposition,” in Proceedings of International Symposium on Signal Processing and its Applications ISSPA–05, 647–650 (2005).
[CrossRef]

E. Robin and V. Valle, “Phase demodulation method from a single fringe pattern based on correlation technique with a polynomial form,” Appl. Opt. 34, 7261–7269 (2005).
[CrossRef]

2004 (1)

K. Zeng and M. -X. He, “A simple boundary process technique for empirical mode decomposition,” IEEE Int. Geosci. Remote Sensing 6, 4258–4261 (2004).

2003 (4)

G. Rilling, P. Flandrin, and P. Gonçalves “On Empirical Mode Decomposition and its algorithms”, Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 (2003).

W. An and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Lasers Eng. 40, 529–541 (2003).
[CrossRef]

V. D. Madjarova, H. Kadono, and S. Toyooka, “Dynamic speckle pattern interferometry (DESPI) phase analyses with temporal Hilbert transform,” Opt. Express 11, 617–623 (2003).
[CrossRef] [PubMed]

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

2001 (1)

1999 (3)

J. L. Marroquin, M. Rivera, S. Botello, R. Rodriguez–Vera, and M. Servin, “Regularization methods for processsing fringe-pattern images,” Appl. Opt. 38, 788–794 (1999).
[CrossRef]

H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

M. Cherbuliez, P. Jacquot, and X. Colonna de Lega, “Wavelet processing of interferometric signals and fringe patterns,” Proc. SPIE 3813, 692–702 (1999).
[CrossRef]

1998 (1)

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

1996 (2)

D. Vakman, “On the analytic signal, the Teager-Kaiser algorithm, and other methods for defining amplitude and frequency,” IEEE Trans. Sig. Proc. 44, 791–797 (1996).
[CrossRef]

Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase-shifting,” Appl. Opt. 35, 5115–5121 (1996).
[CrossRef]

1993 (1)

1992 (1)

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal,” Proc. IEEE 80, 520–568 (1992).
[CrossRef]

1990 (1)

1986 (1)

1982 (1)

1963 (1)

E. Bedrosian, “A product theorem for Hilbert transforms,” Proc. IEEE 51, 868–869 (1963).
[CrossRef]

Aebischer, H. A.

H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

An, W.

W. An and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Lasers Eng. 40, 529–541 (2003).
[CrossRef]

Bachor, H. -A.

Baldi, A.

S. Equis, A. Baldi, and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” in Proceedings of the International Conference in Experimental Mechanics, E.E. Gdoutos, ed. (Springer, Dordrecht, The Netherlands, 2007), pp. 719–720 & CD–Rom.

Bedrosian, E.

E. Bedrosian, “A product theorem for Hilbert transforms,” Proc. IEEE 51, 868–869 (1963).
[CrossRef]

Boashash, B.

N. Stevenson, M. Mesbah, and B. Boashash, “A sampling limit for the empirical mode decomposition,” in Proceedings of International Symposium on Signal Processing and its Applications ISSPA–05, 647–650 (2005).
[CrossRef]

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal,” Proc. IEEE 80, 520–568 (1992).
[CrossRef]

Bone, D. J.

Bone, D.J.

Botello, S.

Bracewell, R.

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill Book Company, 1965).

Bruno, L.

Carlsson, T. E.

W. An and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Lasers Eng. 40, 529–541 (2003).
[CrossRef]

Cherbuliez, M.

M. Cherbuliez, P. Jacquot, and X. Colonna de Lega, “Wavelet processing of interferometric signals and fringe patterns,” Proc. SPIE 3813, 692–702 (1999).
[CrossRef]

Creath, K.

K. Creath, Interferogram Analysis (Institute of Physics Publishing, Bristol, UK, 1993), Chap. 4.

Equis, S.

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6841, 634138–1–634138–6 (2006).
[CrossRef]

S. Equis, A. Baldi, and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” in Proceedings of the International Conference in Experimental Mechanics, E.E. Gdoutos, ed. (Springer, Dordrecht, The Netherlands, 2007), pp. 719–720 & CD–Rom.

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” Strain (to be published).

Fan, K. L.

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

Federico, A.

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition,” Opt. Commun. 275, 38–41 (2007).
[CrossRef]

A. Federico and G. Kaufmann, “Evaluation of dynamic speckle activity using the empirical mode decomposition,” Opt. Commun. 267, 287–294 (2006).
[CrossRef]

Flandrin, P.

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Sig. Proc. 56, 85–95 (2008).
[CrossRef]

G. Rilling and P. Flandrin, “On the influence of sampling on the empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP–06 (2006).
[CrossRef]

G. Rilling, P. Flandrin, and P. Gonçalves “On Empirical Mode Decomposition and its algorithms”, Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 (2003).

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image ProcessingNSIP-03 (2003).

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley-Interscience Publication, New-York, 1998).

Gloersen, P.

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

Gonçalves, P.

G. Rilling, P. Flandrin, and P. Gonçalves “On Empirical Mode Decomposition and its algorithms”, Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 (2003).

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image ProcessingNSIP-03 (2003).

He, M. -X.

K. Zeng and M. -X. He, “A simple boundary process technique for empirical mode decomposition,” IEEE Int. Geosci. Remote Sensing 6, 4258–4261 (2004).

Huang, N. E.

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Huntley, J. M.

Ina, H.

Jacquot, P.

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6841, 634138–1–634138–6 (2006).
[CrossRef]

M. Cherbuliez, P. Jacquot, and X. Colonna de Lega, “Wavelet processing of interferometric signals and fringe patterns,” Proc. SPIE 3813, 692–702 (1999).
[CrossRef]

Colonna de Lega and P. Jacquot, “Deformation measurement with object-induced dynamic phase-shifting,” Appl. Opt. 35, 5115–5121 (1996).
[CrossRef]

S. Equis, A. Baldi, and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” in Proceedings of the International Conference in Experimental Mechanics, E.E. Gdoutos, ed. (Springer, Dordrecht, The Netherlands, 2007), pp. 719–720 & CD–Rom.

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” Strain (to be published).

Kadono, H.

Kaufmann, G.

A. Federico and G. Kaufmann, “Evaluation of dynamic speckle activity using the empirical mode decomposition,” Opt. Commun. 267, 287–294 (2006).
[CrossRef]

Kaufmann, G. H.

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition,” Opt. Commun. 275, 38–41 (2007).
[CrossRef]

Kobayashi, S.

Larkin, K. G.

Lega, Colonna de

Lega, X. Colonna de

M. Cherbuliez, P. Jacquot, and X. Colonna de Lega, “Wavelet processing of interferometric signals and fringe patterns,” Proc. SPIE 3813, 692–702 (1999).
[CrossRef]

Lehmann, M.

M. LehmannDigital Speckle Pattern Interferometry and Related Techniques (John Wiley & Sons, Ltd, Chichester, 2001), Chap. 1.

Liu, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Long, S. R.

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Madjarova, V. D.

Marroquin, J. L.

Mesbah, M.

N. Stevenson, M. Mesbah, and B. Boashash, “A sampling limit for the empirical mode decomposition,” in Proceedings of International Symposium on Signal Processing and its Applications ISSPA–05, 647–650 (2005).
[CrossRef]

Oldfield, M. A.

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley-Interscience Publication, New-York, 1998).

Qu, W.

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

Rilling, G.

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Sig. Proc. 56, 85–95 (2008).
[CrossRef]

G. Rilling and P. Flandrin, “On the influence of sampling on the empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP–06 (2006).
[CrossRef]

G. Rilling, P. Flandrin, and P. Gonçalves “On Empirical Mode Decomposition and its algorithms”, Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 (2003).

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image ProcessingNSIP-03 (2003).

Rivera, M.

Robin, E.

E. Robin and V. Valle, “Phase demodulation method from a single fringe pattern based on correlation technique with a polynomial form,” Appl. Opt. 34, 7261–7269 (2005).
[CrossRef]

Rodriguez, F. A. Marengo

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition,” Opt. Commun. 275, 38–41 (2007).
[CrossRef]

Rodriguez–Vera, R.

Saldner, H.

Sandeman, R. J.

Servin, M.

Shen, S. S. P.

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

Shen, Z.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Shih, H. H.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Stevenson, N.

N. Stevenson, M. Mesbah, and B. Boashash, “A sampling limit for the empirical mode decomposition,” in Proceedings of International Symposium on Signal Processing and its Applications ISSPA–05, 647–650 (2005).
[CrossRef]

Takeda, M.

Toyooka, S.

Tung, C. C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Vakman, D.

D. Vakman, “On the analytic signal, the Teager-Kaiser algorithm, and other methods for defining amplitude and frequency,” IEEE Trans. Sig. Proc. 44, 791–797 (1996).
[CrossRef]

Valle, V.

E. Robin and V. Valle, “Phase demodulation method from a single fringe pattern based on correlation technique with a polynomial form,” Appl. Opt. 34, 7261–7269 (2005).
[CrossRef]

Vikhagen, E.

Waldner, S.

H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

Wu, M. C.

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Yen, N. -C.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Zeng, K.

K. Zeng and M. -X. He, “A simple boundary process technique for empirical mode decomposition,” IEEE Int. Geosci. Remote Sensing 6, 4258–4261 (2004).

Zheng, Q.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Appl. Opt. (6)

IEEE Int. Geosci. Remote Sensing (1)

K. Zeng and M. -X. He, “A simple boundary process technique for empirical mode decomposition,” IEEE Int. Geosci. Remote Sensing 6, 4258–4261 (2004).

IEEE Trans. Sig. Proc. (2)

G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition answers,” IEEE Trans. Sig. Proc. 56, 85–95 (2008).
[CrossRef]

D. Vakman, “On the analytic signal, the Teager-Kaiser algorithm, and other methods for defining amplitude and frequency,” IEEE Trans. Sig. Proc. 44, 791–797 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle interferometric phase fringe patterns,” Opt. Commun. 162, 205–210 (1999).
[CrossRef]

A. Federico and G. Kaufmann, “Evaluation of dynamic speckle activity using the empirical mode decomposition,” Opt. Commun. 267, 287–294 (2006).
[CrossRef]

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Phase measurement improvement in temporal speckle pattern interferometry using empirical mode decomposition,” Opt. Commun. 275, 38–41 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

W. An and T. E. Carlsson, “Speckle interferometry for measurement of continuous deformations,” Opt. Lasers Eng. 40, 529–541 (2003).
[CrossRef]

Proc. IEEE (2)

B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal,” Proc. IEEE 80, 520–568 (1992).
[CrossRef]

E. Bedrosian, “A product theorem for Hilbert transforms,” Proc. IEEE 51, 868–869 (1963).
[CrossRef]

Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (1)

G. Rilling, P. Flandrin, and P. Gonçalves “On Empirical Mode Decomposition and its algorithms”, Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 (2003).

Proc. R. Soc. London Ser. A (2)

N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. London Ser. A 459, 2317–2345 (2003).
[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903–995 (1998).
[CrossRef]

Proc. SPIE (2)

M. Cherbuliez, P. Jacquot, and X. Colonna de Lega, “Wavelet processing of interferometric signals and fringe patterns,” Proc. SPIE 3813, 692–702 (1999).
[CrossRef]

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6841, 634138–1–634138–6 (2006).
[CrossRef]

Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing (1)

G. Rilling and P. Flandrin, “On the influence of sampling on the empirical mode decomposition,” in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP–06 (2006).
[CrossRef]

Proceedings of International Symposium on Signal Processing and its Applications (1)

N. Stevenson, M. Mesbah, and B. Boashash, “A sampling limit for the empirical mode decomposition,” in Proceedings of International Symposium on Signal Processing and its Applications ISSPA–05, 647–650 (2005).
[CrossRef]

Other (10)

http://perso.ens-lyon.fr/patrick.flandrin/publis.html

www.qhull.org

M. LehmannDigital Speckle Pattern Interferometry and Related Techniques (John Wiley & Sons, Ltd, Chichester, 2001), Chap. 1.

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” Strain (to be published).

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill Book Company, 1965).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley-Interscience Publication, New-York, 1998).

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image ProcessingNSIP-03 (2003).

S. Equis, A. Baldi, and P. Jacquot, “Phase extraction in dynamic speckle interferometry by empirical mode decomposition,” in Proceedings of the International Conference in Experimental Mechanics, E.E. Gdoutos, ed. (Springer, Dordrecht, The Netherlands, 2007), pp. 719–720 & CD–Rom.

Cf. Proceedings of the “Fringe” Conferences Series, as e.g.: W. Osten and W. Jüptner Eds., Elsevier (2001), W. Osten Ed., Springer (2005).

K. Creath, Interferogram Analysis (Institute of Physics Publishing, Bristol, UK, 1993), Chap. 4.

Supplementary Material (3)

» Media 1: MOV (2912 KB)     
» Media 2: MOV (2691 KB)     
» Media 3: MOV (2000 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

A typical temporal pixel signal experimentally obtained in SI (gray levels in ordinate and time measured in frame number in abscissa).

Fig. 2.
Fig. 2.

Standard EMD algorithm.

Fig. 3.
Fig. 3.

Standard deviation of the difference between the extracted phase from the 1st IMF and the theoretical phase with an upper bound.

Fig. 4.
Fig. 4.

(a) averaged criterion δ for 10 iterations of sifting process, (b) EMD filter model (cubic spline kernel) with simulations in solid line and predictions in dashed line.

Fig. 5.
Fig. 5.

A simulated temporal SI signal.

Fig. 6.
Fig. 6.

Histograms of criterion defined in Eq. (10) for 4096 simulated SI temporal signals with 1, 5 and 10 iterations of sifting process.

Fig. 7.
Fig. 7.

(a) Pseudo-IMF obtained after fast EMD with areas identified as invalid (1) or valid (0) (gray levels in ordinate and sample number in abscissa), and (b) its discrete extracted IF.

Fig. 8.
Fig. 8.

In-plane SI experiment.

Fig. 9.
Fig. 9.

Phase extraction results: (a) (Media 1) of the raw phase, (b) (Media 2) the raw phase filtered with a 5×5 median filter and (c) (Media 3) the phase resulting from the 3DPP.

Fig. 10.
Fig. 10.

Cross-sections of the total computed displacement in each case depicted in Fig. 9.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

s(x,y,t)=α+β(x,y,t)·cos(ψs(x,y,t)+ψopd(x,y,t)) ,
s(t)=Σk=1Kdk(t)+mk(t),
xfs,φ[k]=cos(2π·fs·k+φ),
σϕφ=1Nk=1N((ϕimf(k)2πfskφ)ϕimf(k)2πfskφN)2φ,
x(t)=cos(2πt)+α·cos(2πνt+φ),
δ1i(α,ν,φ)=d1i(α,ν)cos(2πt)12α·cos(2πνt+φ)12,
δ1i=d1i2I1·I2·cos(φspφref)I1+I2
HT[u(t)]=1π u(x)txdx=1πtu(t),FT{HT[u(t)]}={i·U(ν),ν>0i·U(ν),ν<0,
φas(t)=arctan(HT[u(t)]u(t))
fas(t)=ddt φas (t)
fas[n]=12π (φas[n]φas[n1])
f̄=12τ
Δφ=2πλ(S1S2)·L=S·Lx,
S=4πλ ·sinθ

Metrics