Abstract

Spatially shaped femtosecond laser pulses are used to generate and to focus tunable terahertz (THz) pulses by Optical Rectification in a Zinc Telluride (ZnTe) crystal. It is shown analytically and experimentally that the focusing position and spectrum of the emitted THz pulse can be changed, in the intermediate field zone, by controlling the spatial shape of the near-infrared (NIR) femtosecond (fs) laser pump. In particular, if the pump consists of concentric circles, the emitted THz radiation is confined around the propagation axis, producing a THz pulse train, and focusing position and spectrum can be controlled by changing the number of circles and their diameter.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation

A. G. Stepanov, J. Hebling, and J. Kuhl
Opt. Express 12(19) 4650-4658 (2004)

Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann
Opt. Express 15(20) 13212-13220 (2007)

Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches

J. van Tilborg, Cs. Tóth, N. H. Matlis, G. R. Plateau, and W. P. Leemans
Opt. Lett. 33(11) 1186-1188 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. Reinmann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
    [Crossref]
  2. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39R301–R310 (2006).
    [Crossref]
  3. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
    [Crossref]
  4. H. Zhong, A. Redo-Sanchez, and X. -C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system” Opt. Express 14, 9130–9141 (2006).
    [Crossref] [PubMed]
  5. R. M. Koehl and K. Nelson, “Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves,” Chem. Phys. 267, 151–159 (2001).
    [Crossref]
  6. J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
    [Crossref]
  7. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast pulses,” Opt. Express 11, 2486–2496 (2003).
    [Crossref] [PubMed]
  8. J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via TeraHertz generation and the electro-optical effect in Zinc Blende crystals,” Phys. Rev. Lett. 28, 047401(1-4) (2002).
    [Crossref]
  9. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
    [Crossref]
  10. A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23–26 (2005)
    [Crossref]
  11. R. Chakkittakandy, J. A. W. M. Corver, and P. C. M. Planken, “Quasi-near field terahertz generation and detection,” Opt. Express 16, 12794–12805 (2008)
    [PubMed]

2008 (1)

2007 (1)

K. Reinmann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
[Crossref]

2006 (2)

2005 (2)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23–26 (2005)
[Crossref]

2003 (1)

2002 (2)

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
[Crossref]

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via TeraHertz generation and the electro-optical effect in Zinc Blende crystals,” Phys. Rev. Lett. 28, 047401(1-4) (2002).
[Crossref]

2001 (1)

R. M. Koehl and K. Nelson, “Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves,” Chem. Phys. 267, 151–159 (2001).
[Crossref]

1984 (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Ahn, J.

Ahn, Y. H.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
[Crossref]

Auston, D. H.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Averitt, R. D.

Caumes, J.-P.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via TeraHertz generation and the electro-optical effect in Zinc Blende crystals,” Phys. Rev. Lett. 28, 047401(1-4) (2002).
[Crossref]

Chakkittakandy, R.

Cheung, K. P.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

Corver, J. A. W. M.

Efimov, A. V.

Freysz, E.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via TeraHertz generation and the electro-optical effect in Zinc Blende crystals,” Phys. Rev. Lett. 28, 047401(1-4) (2002).
[Crossref]

Hebling, J.

A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23–26 (2005)
[Crossref]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

Kim, D. S.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
[Crossref]

Kleinman, D. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Koehl, R. M.

R. M. Koehl and K. Nelson, “Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves,” Chem. Phys. 267, 151–159 (2001).
[Crossref]

Kuhl, J.

A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23–26 (2005)
[Crossref]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

Nelson, K.

R. M. Koehl and K. Nelson, “Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves,” Chem. Phys. 267, 151–159 (2001).
[Crossref]

Oh, E.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
[Crossref]

Park, D. J.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
[Crossref]

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39R301–R310 (2006).
[Crossref]

Planken, P. C. M.

Redo-Sanchez, A.

Reinmann, K.

K. Reinmann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
[Crossref]

Rouyer, C.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via TeraHertz generation and the electro-optical effect in Zinc Blende crystals,” Phys. Rev. Lett. 28, 047401(1-4) (2002).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

Sohn, J. Y.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
[Crossref]

Stepanov, A. G.

A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23–26 (2005)
[Crossref]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

Taylor, A. J.

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Videau, L.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via TeraHertz generation and the electro-optical effect in Zinc Blende crystals,” Phys. Rev. Lett. 28, 047401(1-4) (2002).
[Crossref]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39R301–R310 (2006).
[Crossref]

Zhang, X. -C.

Zhong, H.

Appl. Phys. B (1)

A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23–26 (2005)
[Crossref]

Appl. Phys. Lett. (2)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116(1-3) (2005).
[Crossref]

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81, 13–15 (2002).
[Crossref]

Chem. Phys. (1)

R. M. Koehl and K. Nelson, “Terahertz polaritonics: automated spatiotemporal control over propagating lattice waves,” Chem. Phys. 267, 151–159 (2001).
[Crossref]

J. Phys. D: Appl. Phys. (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39R301–R310 (2006).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (2)

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-like nonlinearity induced via TeraHertz generation and the electro-optical effect in Zinc Blende crystals,” Phys. Rev. Lett. 28, 047401(1-4) (2002).
[Crossref]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Rep. Prog. Phys. (1)

K. Reinmann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Theoretical spatiotemporal behavior, at different positions along the propagation axis, of a THz pulse emitted by a ZnTe crystal, in which the NIR pump cross-section geometry is represented by two concentric circles. The two circles have radii of 2 mm and 7 mm and a thickness of 200 μm.

Fig. 2.
Fig. 2.

Experimental setup. The THz generating and the detecting ZnTe have a thickness of 1 mm.

Fig. 3.
Fig. 3.

Experimental results (figures 3(a), 3(c), 3(e)) and corresponding numerical simulations (figures 3(b), 3(d), 3(f)) for THz spectra obtained by optical rectification in ZnTe under two concentric circles configurations of the pump laser beam profile. The insets show input beam rings. Each time, spectral amplitudes are normalized.

Fig. 4.
Fig. 4.

THz peak spectral amplitude against the position of the detecting ZnTe crystal along z. THz radiation shows interesting “self-focusing” properties. The “focal” position changes with the radius values of the circles. Fig. 4a) Experiment (the insets show representative ring configuration, lines are guides for eyes); Fig. 4b) simulations.

Fig. 5.
Fig. 5.

Fig. 5a) Multi-mode theoretical THz spectra obtained with a two circle configuration (radiuses of 3 mm and 9 mm), at 2.5 cm (solid line) and 2.9 cm (dashed line) from the generating ZnTe. Fig. 5b) Narrow-band THz theoretical spectra obtained with a five circle configuration (radiuses of 11, 12, 13, 14 and 15 mm) at 3 cm (solid line) and 4cm (dashed line) from the generating ZnTe. Each time the initial THz spectrum is shown (dash-dotted line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EΩkz=EΩkz02{eik(Ω)(zz0)[1+r2/2(zz0)2]iλ(zz0)}
EΩkz0=iz0G(k)k(Ω)+Ω/vgΩ2c2χ2(Ω)C(Ω)eiz02[k(Ω)+Ω/vg]sinc[z02Δ(Ω)]
G(k)=2π0F(r)J0(kr)rdr

Metrics