Abstract

An active-fiber-based all-optical first-order temporal differentiator with power efficiency surpassing 100% is demonstrated experimentally. It is based on a long-period fiber grating (LPFG) inscribed into a piece of highly-doped Erbium-doped fiber (EDF). The performed theoretical analysis considers effects like relative position of the LPFG with respect to the input end of the EDF and influence of the input signal power. In the design, parameters like noise characteristics and level of non-linear interaction are taken into account. The advantages of such an implementation over the setup using concatenation of a passive LPFG with an amplifier lies in reducing the unwanted nonlinearities and reducing the amplified spontaneous emission (ASE).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).
  2. M. A. Preciado and M. A. Muriel, "Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission," Opt. Lett. 33, 2458-2461 (2008).
  3. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, "Ultrafast all-optical differentiators," Opt. Express 14, 10699-10707 (2006).
  4. Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
  5. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, "All-Optical Temporal Differentiator based on a Single Phase-Shifted Fiber Bragg Grating," Opt. Express 15, 371-381 (2007).
  6. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, "All-optical differentiator based on cross-gain modulation in semiconductor optical amplifier," Opt. Lett. 32, 3029-3032 (2007).
  7. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, "High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter," Opt. Lett. 32, 1872-1875 (2007).
  8. F. Li, Y. Park, and J. Azaña, "Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD)," Opt. Lett. 32, 3364-3366 (2007).
  9. R. Slavík, Y. Park, and J. Azaña, "Tunable dispersion-tolerant picosecond flat-top waveform generation using an optical differentiator," Opt. Express 15, 6717-6726 (2007).
  10. Y. Park, J. Azaña, and R. Slavík, "Ultrafast all-optical first- and higher-order differentiators based on interferometers," Opt. Lett. 32, 710-712 (2007).
  11. R. Slavík and M. Kulishov, "Active control of long-period fiber-grating-based filters made in erbium-doped optical fibers," Opt. Lett. 32, 757-759 (2007).
  12. D. Krčmařík, R. Slavík, M. Karásek, and M. Kulishov, "Theoretical and experimental analysis of long-period fiber gratings made directly into Er-doped active fibers," to appear in J. Lightwave Technol. (2009).
  13. Q1. C. Lee, J. Kim, and S. Seo, "Quality-of-service differentiation by multilength variable-weight time-and-frequency-hopping optical orthogonal codes in optical code-division multiple-access networks," J. Opt. Net. 5, 611-624 (2006).
  14. R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
  15. Q2. Ch. Jiang, W. Hu, and Q. Zeng, "Numerical Analysis of Concentration Quenching Model of Er3+-Doped Phosphate Fiber Amplifier," J. Quantum Electron. 39, 1266-1271 (2003).
  16. http://www.liekki.com/
  17. V. Grubsky and J. Feinberg, "Fabrication of Axially Symmetric Long-Period Gratings with a Carbon Dioxide Laser," IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).
  18. Y. Park, F. Li, and J. Azaña, "Characterization and Optimization of Optical Pulse Differentiation Using Spectral Interferometry," IEEE Photon. Technol. Lett. 18, 1798-1800 (2006).

2008 (1)

2007 (7)

2006 (6)

Q1. C. Lee, J. Kim, and S. Seo, "Quality-of-service differentiation by multilength variable-weight time-and-frequency-hopping optical orthogonal codes in optical code-division multiple-access networks," J. Opt. Net. 5, 611-624 (2006).

R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).

R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, "Ultrafast all-optical differentiators," Opt. Express 14, 10699-10707 (2006).

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).

V. Grubsky and J. Feinberg, "Fabrication of Axially Symmetric Long-Period Gratings with a Carbon Dioxide Laser," IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).

Y. Park, F. Li, and J. Azaña, "Characterization and Optimization of Optical Pulse Differentiation Using Spectral Interferometry," IEEE Photon. Technol. Lett. 18, 1798-1800 (2006).

2004 (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

2003 (1)

Q2. Ch. Jiang, W. Hu, and Q. Zeng, "Numerical Analysis of Concentration Quenching Model of Er3+-Doped Phosphate Fiber Amplifier," J. Quantum Electron. 39, 1266-1271 (2003).

Azaña, J.

Berger, N. K.

Blais, S.

Dong, J.

Feinberg, J.

V. Grubsky and J. Feinberg, "Fabrication of Axially Symmetric Long-Period Gratings with a Carbon Dioxide Laser," IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).

Fischer, B.

Grubsky, V.

V. Grubsky and J. Feinberg, "Fabrication of Axially Symmetric Long-Period Gratings with a Carbon Dioxide Laser," IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).

Hu, W.

Q2. Ch. Jiang, W. Hu, and Q. Zeng, "Numerical Analysis of Concentration Quenching Model of Er3+-Doped Phosphate Fiber Amplifier," J. Quantum Electron. 39, 1266-1271 (2003).

Huang, D.

Jiang, Ch.

Q2. Ch. Jiang, W. Hu, and Q. Zeng, "Numerical Analysis of Concentration Quenching Model of Er3+-Doped Phosphate Fiber Amplifier," J. Quantum Electron. 39, 1266-1271 (2003).

Kam, C. H.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Kim, J.

Q1. C. Lee, J. Kim, and S. Seo, "Quality-of-service differentiation by multilength variable-weight time-and-frequency-hopping optical orthogonal codes in optical code-division multiple-access networks," J. Opt. Net. 5, 611-624 (2006).

Kulishov, M.

Lee, C.

Q1. C. Lee, J. Kim, and S. Seo, "Quality-of-service differentiation by multilength variable-weight time-and-frequency-hopping optical orthogonal codes in optical code-division multiple-access networks," J. Opt. Net. 5, 611-624 (2006).

Levit, B.

Li, F.

F. Li, Y. Park, and J. Azaña, "Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD)," Opt. Lett. 32, 3364-3366 (2007).

Y. Park, F. Li, and J. Azaña, "Characterization and Optimization of Optical Pulse Differentiation Using Spectral Interferometry," IEEE Photon. Technol. Lett. 18, 1798-1800 (2006).

Liu, D.

Morandotti, R.

Muriel, M. A.

Ngo, N. Q.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Park, Y.

Plant, D. V.

Preciado, M. A.

Seo, S.

Q1. C. Lee, J. Kim, and S. Seo, "Quality-of-service differentiation by multilength variable-weight time-and-frequency-hopping optical orthogonal codes in optical code-division multiple-access networks," J. Opt. Net. 5, 611-624 (2006).

Slavík, R.

Tjin, S. C.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Wang, Q.

Xu, J.

Yao, J.

Yu, S. F.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Zeng, F.

Zeng, Q.

Q2. Ch. Jiang, W. Hu, and Q. Zeng, "Numerical Analysis of Concentration Quenching Model of Er3+-Doped Phosphate Fiber Amplifier," J. Quantum Electron. 39, 1266-1271 (2003).

Zhang, X.

IEEE Photon. Technol. Lett. (3)

R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).

V. Grubsky and J. Feinberg, "Fabrication of Axially Symmetric Long-Period Gratings with a Carbon Dioxide Laser," IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).

Y. Park, F. Li, and J. Azaña, "Characterization and Optimization of Optical Pulse Differentiation Using Spectral Interferometry," IEEE Photon. Technol. Lett. 18, 1798-1800 (2006).

J. Opt. Net. (1)

Q1. C. Lee, J. Kim, and S. Seo, "Quality-of-service differentiation by multilength variable-weight time-and-frequency-hopping optical orthogonal codes in optical code-division multiple-access networks," J. Opt. Net. 5, 611-624 (2006).

J. Quantum Electron. (1)

Q2. Ch. Jiang, W. Hu, and Q. Zeng, "Numerical Analysis of Concentration Quenching Model of Er3+-Doped Phosphate Fiber Amplifier," J. Quantum Electron. 39, 1266-1271 (2003).

Opt. Commun. (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Opt. Express (3)

Opt. Lett. (7)

Other (2)

D. Krčmařík, R. Slavík, M. Karásek, and M. Kulishov, "Theoretical and experimental analysis of long-period fiber gratings made directly into Er-doped active fibers," to appear in J. Lightwave Technol. (2009).

http://www.liekki.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

EE of the differentiator as a function of the LPFG relative position along the EDF for two average input powers of 100μW and 1 mW.

Fig. 2.
Fig. 2.

Relative amount of noise (ASE) in the output signal for different positions of LPFG along the EDF and different average input powers of 100μW and 1 mW. Both, a passive differentiator-based device and an active-fiber-based structure with identical specifications (see details in the text) are evaluated.

Fig. 3.
Fig. 3.

Power evolution for four different relative positions of the LPFG along the EDF (shown as black, red, green, and blue lines) for two input power levels of 100μW (a) and 1 mW (b). For selected positions, the expected performance considering a passive-fiber based LPFG is also shown.

Fig. 4.
Fig. 4.

(a) broad-band and (b) narrow-band samples structure.

Fig. 5.
Fig. 5.

Input and output signal envelopes in the time domain for (a) the broadband structure (pump power: 180 mW) and (b) the narrowband structure (pump power: 130 mW).

Fig. 6.
Fig. 6.

Measurement set-up for Fourier transform spectral interferometry.

Fig. 7.
Fig. 7.

Transmission characteristics for different pumping for the front scheme (solid) and the rear scheme (dashed) for both samples (a) broadband and (b) narrowband.

Fig. 8.
Fig. 8.

Non-linear distortion of the pulse differentiation for the narrowband sample and maximum pump power of 180 mW (rear scheme).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H(ωω0)j(ωω0),
Error=n=1Nymeas2(n)max(ymeas2(n))yideal2(n)max(yideal2(n))N,

Metrics