Abstract

We report on dynamic waveguides and waveguide arrays induced beneath the surface of electro-optic Sn2P2S6 crystals by visible light at 514 nm. The waveguide structures are generated by interband photoexcitation and drift or diffusion charge transport mechanism. These structures are probed nondestructively in the transverse direction with a beam at a longer wavelength. We measured the fastest formation of light induced waveguides in the visible up to now. The recording times are below 200 μs for intensities above 0.1 W/cm2. By interfering two light beams, dynamic waveguide arrays are generated with waveguide spacings of 7μm. If an electric field is applied to the crystal, these arrays can be spatially shifted by 1.5 μm for an applied field of E 0 = 1 kV/cm.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interband photorefraction in Sn2P2S6 at visible wavelengths

Roger Mosimann, Daniel Haertle, Mojca Jazbinsek, Germano Montemezzani, and Peter Günter
J. Opt. Soc. Am. B 23(8) 1620-1625 (2006)

Photorefractive waveguides in He+ implanted pure and Te-doped Sn2P2S6

Roger Mosimann, Flurin Juvalta, Mojca Jazbinsek, Peter Günter, and Alexander A. Grabar
J. Opt. Soc. Am. B 26(3) 444-449 (2009)

Fast near-infrared self-pumped phase conjugation with photorefractive Sn 2 P 2 S 6

Mojca Jazbinšek, Germano Montemezzani, Peter Günter, Alexander A. Grabar, Ivan M. Stoika, and Yulian M. Vysochanskii
J. Opt. Soc. Am. B 20(6) 1241-1246 (2003)

References

  • View by:
  • |
  • |
  • |

  1. P. Günter, Nonlinear optical effects and materials (Springer2000).
  2. D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
    [Crossref]
  3. J. Olivares, A. Garcia-Navarro, G. Garcia, A. Mendez, F. Agullo-Lopez, A. Garcia-Cabanes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
    [Crossref] [PubMed]
  4. O. Matoba, T. Inujima, T. Shimura, and K. Kuroda, “Segmented photorefractive waveguides in LiNbO3:Fe,” J. Opt. Soc. Am. B 15, 2006–2012 (1998).
    [Crossref]
  5. P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
    [Crossref]
  6. F. Juvalta, B. Koziarska-Glinka, M. Jazbinšek, G. Montemezzani, K. Kitamura, and P. Günter, “Deep UV light induced, fast reconfigurable and fixed waveguides in mg doped LiTaO3,” Opt. Express 14, 8278–8289 (2006).
    [Crossref] [PubMed]
  7. J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Comm. 188, 55–61 (2001).
    [Crossref]
  8. P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
    [Crossref]
  9. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
    [Crossref] [PubMed]
  10. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
    [Crossref] [PubMed]
  11. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
    [Crossref] [PubMed]
  12. C. R. Rosberg, I. L. Garanovich, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Demonstration of all-optical beam steering in modulated photonic lattices,” Opt. Lett. 31, 1498–1500 (2006).
    [Crossref] [PubMed]
  13. J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, “Spatial photonics in nonlinear waveguide arrays,” Opt. Express 13, 1780–1796 (2005).
    [Crossref] [PubMed]
  14. A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. A. Grabar, “Spectral sensitivity of nominally undoped photorefractive Sn2P2S6,” Appl. Phys. B 88, 79–82 (2007).
    [Crossref]
  15. R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinšek, P. Günter, and A. A. Grabar, “High-speed photorefraction at telecommunication wavelength 1.55 μm in Sn2P2S6 :te,” Opt. Lett. 32, 3230–3232 (2007).
    [Crossref] [PubMed]
  16. A. A. Grabar, M. Jazbinšek, A. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2, P. G. Huignard and J. -P., eds., pp. 327–362 (Springer, 2007).
  17. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
    [Crossref]
  18. T. Bach, M. Jazbinšek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 μm in te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005).
    [Crossref] [PubMed]
  19. C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:te crystals,” Opt. Express 16, 12777–12782 (2007).
    [Crossref]
  20. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
    [Crossref]
  21. R. Mosimann, D. Haertle, M. Jazbinšek, G. Montemezzani, and P. Günter, “Interband photorefraction in Sn2P2S6 at visible wavelengths,” J. Opt. Soc. Am. B 23, 1620–1625 (2006).
    [Crossref]

2007 (4)

2006 (3)

2005 (2)

2003 (4)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
[Crossref]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[Crossref] [PubMed]

2001 (1)

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Comm. 188, 55–61 (2001).
[Crossref]

2000 (1)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (2)

O. Matoba, T. Inujima, T. Shimura, and K. Kuroda, “Segmented photorefractive waveguides in LiNbO3:Fe,” J. Opt. Soc. Am. B 15, 2006–2012 (1998).
[Crossref]

D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
[Crossref]

1994 (1)

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[Crossref]

Agullo-Lopez, F.

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

Bach, T.

Bartal, G.

Bernasconi, P.

Brost, G.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. A. Grabar, “Spectral sensitivity of nominally undoped photorefractive Sn2P2S6,” Appl. Phys. B 88, 79–82 (2007).
[Crossref]

Buljan, H.

Caballero, O.

Caimi, G.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

Carrascosa, M.

Christodoulides, D. N.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[Crossref] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

Cohen, O.

Dan, C.

Denz, C.

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Comm. 188, 55–61 (2001).
[Crossref]

Dittrich, P.

Efremidis, N. K.

J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, “Spatial photonics in nonlinear waveguide arrays,” Opt. Express 13, 1780–1796 (2005).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[Crossref] [PubMed]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

Fleischer, J. W.

J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, “Spatial photonics in nonlinear waveguide arrays,” Opt. Express 13, 1780–1796 (2005).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[Crossref] [PubMed]

Freedman, B.

Fressengeas, N.

Garanovich, I. L.

Garcia, G.

Garcia-Cabanes, A.

Garcia-Navarro, A.

Grabar, A. A.

R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinšek, P. Günter, and A. A. Grabar, “High-speed photorefraction at telecommunication wavelength 1.55 μm in Sn2P2S6 :te,” Opt. Lett. 32, 3230–3232 (2007).
[Crossref] [PubMed]

C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:te crystals,” Opt. Express 16, 12777–12782 (2007).
[Crossref]

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. A. Grabar, “Spectral sensitivity of nominally undoped photorefractive Sn2P2S6,” Appl. Phys. B 88, 79–82 (2007).
[Crossref]

T. Bach, M. Jazbinšek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 μm in te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005).
[Crossref] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

A. A. Grabar, M. Jazbinšek, A. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2, P. G. Huignard and J. -P., eds., pp. 327–362 (Springer, 2007).

Günter, P.

R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinšek, P. Günter, and A. A. Grabar, “High-speed photorefraction at telecommunication wavelength 1.55 μm in Sn2P2S6 :te,” Opt. Lett. 32, 3230–3232 (2007).
[Crossref] [PubMed]

F. Juvalta, B. Koziarska-Glinka, M. Jazbinšek, G. Montemezzani, K. Kitamura, and P. Günter, “Deep UV light induced, fast reconfigurable and fixed waveguides in mg doped LiTaO3,” Opt. Express 14, 8278–8289 (2006).
[Crossref] [PubMed]

R. Mosimann, D. Haertle, M. Jazbinšek, G. Montemezzani, and P. Günter, “Interband photorefraction in Sn2P2S6 at visible wavelengths,” J. Opt. Soc. Am. B 23, 1620–1625 (2006).
[Crossref]

T. Bach, M. Jazbinšek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 μm in te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005).
[Crossref] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
[Crossref]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[Crossref]

A. A. Grabar, M. Jazbinšek, A. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2, P. G. Huignard and J. -P., eds., pp. 327–362 (Springer, 2007).

P. Günter, Nonlinear optical effects and materials (Springer2000).

Haertle, D.

R. Mosimann, D. Haertle, M. Jazbinšek, G. Montemezzani, and P. Günter, “Interband photorefraction in Sn2P2S6 at visible wavelengths,” J. Opt. Soc. Am. B 23, 1620–1625 (2006).
[Crossref]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

Haldi, A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

Inujima, T.

Jazbinšek, M.

Juvalta, F.

Kip, D.

D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
[Crossref]

Kitamura, K.

Kivshar, Y. S.

Koziarska-Glinka, B.

Kratzig, E.

D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
[Crossref]

Krolikowski, W.

Kuroda, K.

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

Li, B. L.

P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
[Crossref]

Manela, O.

Marty, P.

Matoba, O.

Mendez, A.

Montemezzani, G.

C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:te crystals,” Opt. Express 16, 12777–12782 (2007).
[Crossref]

F. Juvalta, B. Koziarska-Glinka, M. Jazbinšek, G. Montemezzani, K. Kitamura, and P. Günter, “Deep UV light induced, fast reconfigurable and fixed waveguides in mg doped LiTaO3,” Opt. Express 14, 8278–8289 (2006).
[Crossref] [PubMed]

R. Mosimann, D. Haertle, M. Jazbinšek, G. Montemezzani, and P. Günter, “Interband photorefraction in Sn2P2S6 at visible wavelengths,” J. Opt. Soc. Am. B 23, 1620–1625 (2006).
[Crossref]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
[Crossref]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[Crossref]

A. A. Grabar, M. Jazbinšek, A. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2, P. G. Huignard and J. -P., eds., pp. 327–362 (Springer, 2007).

Morandotti, R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

Moretti, P.

D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
[Crossref]

Mosimann, R.

Neshev, D. N.

Odoulov, S.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. A. Grabar, “Spectral sensitivity of nominally undoped photorefractive Sn2P2S6,” Appl. Phys. B 88, 79–82 (2007).
[Crossref]

Oleynik, O.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. A. Grabar, “Spectral sensitivity of nominally undoped photorefractive Sn2P2S6,” Appl. Phys. B 88, 79–82 (2007).
[Crossref]

Olivares, J.

Petter, J.

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Comm. 188, 55–61 (2001).
[Crossref]

Rogin, P.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[Crossref]

Rosberg, C. R.

Schwartz, T.

Segev, M.

J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, “Spatial photonics in nonlinear waveguide arrays,” Opt. Express 13, 1780–1796 (2005).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[Crossref] [PubMed]

Shandarov, V.

D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
[Crossref]

Shimura, T.

Shumelyuk, A.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. A. Grabar, “Spectral sensitivity of nominally undoped photorefractive Sn2P2S6,” Appl. Phys. B 88, 79–82 (2007).
[Crossref]

A. A. Grabar, M. Jazbinšek, A. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2, P. G. Huignard and J. -P., eds., pp. 327–362 (Springer, 2007).

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

Stoika, I. M.

T. Bach, M. Jazbinšek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 μm in te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005).
[Crossref] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

Sukhorukov, A. A.

Vysochanskii, Y. M.

T. Bach, M. Jazbinšek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 μm in te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005).
[Crossref] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

A. A. Grabar, M. Jazbinšek, A. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2, P. G. Huignard and J. -P., eds., pp. 327–362 (Springer, 2007).

Wesner, M.

D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
[Crossref]

Wolfersberger, D.

Xu, C.

P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
[Crossref]

Yang, D. X.

P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
[Crossref]

Zgonik, M.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[Crossref]

Zhang, P.

P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
[Crossref]

Zhao, J. L.

P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
[Crossref]

Appl. Phys. B (1)

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. A. Grabar, “Spectral sensitivity of nominally undoped photorefractive Sn2P2S6,” Appl. Phys. B 88, 79–82 (2007).
[Crossref]

Appl. Phys. Lett. (1)

D. Kip, M. Wesner, E. Kratzig, V. Shandarov, and P. Moretti, “All-optical beam deflection and switching in strontium-barium-niobate waveguides,” Appl. Phys. Lett. 72, 1960–1962 (1998).
[Crossref]

J. Opt. Soc. Am. B (2)

Nature (2)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003).
[Crossref] [PubMed]

Opt. Comm. (2)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Comm. 215, 333–343 (2003).
[Crossref]

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Comm. 188, 55–61 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mat. (1)

P. Zhang, J. L. Zhao, D. X. Yang, B. L. Li, and C. Xu, “Optically induced photorefractive waveguides in KNSBN:CE crystal,” Opt. Mat. 23, 299–303 (2003).
[Crossref]

Phys. Rev. B (1)

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484–2502 (1994).
[Crossref]

Phys. Rev. Lett. (1)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85, 1863–1866 (2000).
[Crossref] [PubMed]

Other (2)

P. Günter, Nonlinear optical effects and materials (Springer2000).

A. A. Grabar, M. Jazbinšek, A. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications 2, P. G. Huignard and J. -P., eds., pp. 327–362 (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Arrangement for recording light induced waveguide structures. (b) Simplified electric field (dashed red) and refractive index (solid green) distribution in a photorefractive crystal during the formation of the waveguides. Explanation is given in the text.
Fig. 2.
Fig. 2. (a) CCD-images of the output face of a 6.8 mm long SPS crystal without (left) and with (right) a photoinduced waveguide. (b) Build-up times τb of the light induced waveguide as a function of the controlling light intensity.
Fig. 3.
Fig. 3. (a) Output of a 15 mm long pure Sn2P2S6 crystal without (left) and with (right) the induced photorefractive waveguides. (b) Measured profiles along the x-direction without an external applied electric field (red open squares) and with an applied electric field of 1kV/cm (blue solid circles). The lines are drawn for the guidance to the eyes.

Tables (1)

Tables Icon

Table 1. Parameters for the recording of interband light induced waveguides in LiTaO3 [6], KNbO3 [5] and Sn2P2S6[this work]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ESCimEqf(ED+iE0)2EqfiE0
tanϕ±2EqfED+E022EqfE0EDE0.

Metrics