Abstract

We present simulation results for optical modes in micro-pillar cavities that were computed with the finite element method and that show good agreement with experimental data. By means of this viable tool various influences on the quality factor of the fundamental mode were calculated: Firstly, the light confinement depends strongly on the absorption of the semiconductor cavity material. Here we were able to determine absolute maximum quality factors achievable in a GaAs/AlAs Bragg micro-pillar cavity. Furthermore, small pillar diameters as well as the inclination of pillar sidewalls show critical features with respect to light confinement. Additional effects of the top and bottom Bragg stacks in the pillar were calculated as well.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  3. J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
    [Crossref]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
    [Crossref]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
    [Crossref] [PubMed]
  6. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
    [Crossref]
  7. G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
    [Crossref] [PubMed]
  8. M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
    [Crossref]
  9. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
    [Crossref] [PubMed]
  10. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
    [Crossref]
  11. F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
    [Crossref]
  12. M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
    [Crossref]
  13. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [Crossref]
  14. A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
    [Crossref]
  15. J. Vučkovií, M. Pelton, A. Scherer, and Y. Yamamoto “Optimization of three-dimensional micro-post microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
    [Crossref]
  16. Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
    [Crossref]
  17. N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
    [Crossref]
  18. Ph. Lalanne, J. P. Hugonin, and J. M Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726–4728 (2004).
    [Crossref]
  19. G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
    [Crossref]
  20. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive Finite Element Method for Simulation of Optical Nano Structures,” Phys. Status Solidi B,  244, 3419–3434 (2007).
    [Crossref]
  21. L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math.,  188, 12–32, (2006).
    [Crossref]
  22. L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano Resonators,” in Physics and Simulation of Optoelectronic Devices XIVM. Osinski, F. Henneberger, and Y. Arakawa, eds. SPIE 6115, 164–174 (2006).
  23. S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).
  24. J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
    [Crossref]
  25. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
    [Crossref]
  26. M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
    [Crossref]
  27. B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloys system,” J. Appl. Phys. 47, 2604–2613 (1976).
    [Crossref]
  28. D. D. Sell and H. C. Casey, “Optical absorption and photoluminescence studies of thin GaAs layers in GaAs-AlxGa1-xAs double heterostructures,” J. Appl. Phys. 45, 800–807 (1974).
    [Crossref]
  29. M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127, 768–773 (1962).
    [Crossref]
  30. WVase32 J.A. WoollamCo. Inc., Lincoln, USA.
  31. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
    [Crossref]
  32. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
    [Crossref]
  33. T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
    [Crossref]
  34. M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
    [Crossref]
  35. J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]

2008 (2)

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[Crossref]

M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
[Crossref]

2007 (8)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[Crossref]

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[Crossref] [PubMed]

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive Finite Element Method for Simulation of Optical Nano Structures,” Phys. Status Solidi B,  244, 3419–3434 (2007).
[Crossref]

2006 (3)

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math.,  188, 12–32, (2006).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano Resonators,” in Physics and Simulation of Optoelectronic Devices XIVM. Osinski, F. Henneberger, and Y. Arakawa, eds. SPIE 6115, 164–174 (2006).

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
[Crossref]

2005 (5)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

2004 (4)

Ph. Lalanne, J. P. Hugonin, and J. M Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726–4728 (2004).
[Crossref]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

2002 (1)

J. Vučkovií, M. Pelton, A. Scherer, and Y. Yamamoto “Optimization of three-dimensional micro-post microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

1999 (1)

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

1998 (1)

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

1996 (1)

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

1989 (1)

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

1976 (1)

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloys system,” J. Appl. Phys. 47, 2604–2613 (1976).
[Crossref]

1974 (1)

D. D. Sell and H. C. Casey, “Optical absorption and photoluminescence studies of thin GaAs layers in GaAs-AlxGa1-xAs double heterostructures,” J. Appl. Phys. 45, 800–807 (1974).
[Crossref]

1962 (1)

M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127, 768–773 (1962).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abram, I.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Atkinson, P.

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

Awschalom, D. D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Barclay, P. E.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

Barrier, D.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

Bayer, M.

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Beck, T.

M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
[Crossref]

Bennett, A. J.

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

Benyoucef, M.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[Crossref]

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

Borselli, M.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

Braive, R.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Burger, S.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive Finite Element Method for Simulation of Optical Nano Structures,” Phys. Status Solidi B,  244, 3419–3434 (2007).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano Resonators,” in Physics and Simulation of Optoelectronic Devices XIVM. Osinski, F. Henneberger, and Y. Arakawa, eds. SPIE 6115, 164–174 (2006).

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Burkard, G.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Cade, N. I.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Cao, T.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

Casey, H. C.

D. D. Sell and H. C. Casey, “Optical absorption and photoluminescence studies of thin GaAs layers in GaAs-AlxGa1-xAs double heterostructures,” J. Appl. Phys. 45, 800–807 (1974).
[Crossref]

Christenson, C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Costard, E.

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

Craddock, I. J.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

Cryan, M. J.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

Deppe, D. G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Ding, D.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

DiVincenzo, D. P.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Ellis, D. J. P.

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

English, J. H.

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Farrer, I.

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

Forchel, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

Gao, W.

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Gayral, B.

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gérard, J. M

Ph. Lalanne, J. P. Hugonin, and J. M Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726–4728 (2004).
[Crossref]

Gérard, J. M.

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

Gerthsen, D.

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
[Crossref]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Gossard, A. C.

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Gotoh, H.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Gregersen, N.

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[Crossref]

Hawecker, J.

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

Hendrickson, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Hetterich, M.

M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
[Crossref]

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[Crossref] [PubMed]

Ho, Y.-L. D.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

Höfling, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Houh, H. H.

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Hugonin, J. P.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Ph. Lalanne, J. P. Hugonin, and J. M Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726–4728 (2004).
[Crossref]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Ivanov, P. S.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

Jahnke, F.

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

Jewell, J. L.

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Johnson, S. R.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Johnson, T. J.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

Kalt, H.

M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
[Crossref]

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[Crossref] [PubMed]

Kamada, H.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Kamp, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Karl, M.

M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
[Crossref]

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[Crossref] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Kettner, B.

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano Resonators,” in Physics and Simulation of Optoelectronic Devices XIVM. Osinski, F. Henneberger, and Y. Arakawa, eds. SPIE 6115, 164–174 (2006).

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
[Crossref]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
[Crossref]

Kiravittaya, S.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[Crossref]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Klose, R.

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math.,  188, 12–32, (2006).
[Crossref]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
[Crossref]

Köhle, R.

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Kress, A.

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

Krishna, S.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Kuramochi, E.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Kuszelewicz, R.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Lalanne, P.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Lalanne, Ph.

Ph. Lalanne, J. P. Hugonin, and J. M Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726–4728 (2004).
[Crossref]

Lam, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Laurent, S.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Lecamp, G.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Legrand, B.

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lemaître, A.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Li, S.

M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
[Crossref]

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[Crossref] [PubMed]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Löffler, W.

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[Crossref] [PubMed]

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

Loss, D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Lupaca-Schomber, J.

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

Lyanda-Geller, Y.

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

Manin, L.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

März, R.

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Marzin, J. Y.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

McCall, S. L.

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Mei, Y. F.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[Crossref]

Michler, P.

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Monemar, B.

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloys system,” J. Appl. Phys. 47, 2604–2613 (1976).
[Crossref]

Mørk, J.

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[Crossref]

Mosor, S.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Nakano, H.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Nielsen, T. R.

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[Crossref]

Nölscher, C.

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Notomi, M.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Ortner, G.

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

Painter, O.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

Passow, T.

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007).
[Crossref] [PubMed]

Patriarche, G.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Pelton, M.

J. Vučkovií, M. Pelton, A. Scherer, and Y. Yamamoto “Optimization of three-dimensional micro-post microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Pettit, G. D.

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloys system,” J. Appl. Phys. 47, 2604–2613 (1976).
[Crossref]

Pomplun, J.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive Finite Element Method for Simulation of Optical Nano Structures,” Phys. Status Solidi B,  244, 3419–3434 (2007).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Railton, C. J.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

Rarity, J. G.

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

Rastelli, A.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[Crossref]

Reinecke, T. L.

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Reithmaier, J. P.

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Reitzenstein, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Richards, B. C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Ritchie, D. A.

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

Rivera, T.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

Robert-Philip, I.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

S?k, G.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

Sagnes, I.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Schädle, A.

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math.,  188, 12–32, (2006).
[Crossref]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
[Crossref]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

J. Vučkovií, M. Pelton, A. Scherer, and Y. Yamamoto “Optimization of three-dimensional micro-post microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Schmidt, F.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive Finite Element Method for Simulation of Optical Nano Structures,” Phys. Status Solidi B,  244, 3419–3434 (2007).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano Resonators,” in Physics and Simulation of Optoelectronic Devices XIVM. Osinski, F. Henneberger, and Y. Arakawa, eds. SPIE 6115, 164–174 (2006).

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math.,  188, 12–32, (2006).
[Crossref]

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Schmidt, O. G.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[Crossref]

Schneider, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Sell, D. D.

D. D. Sell and H. C. Casey, “Optical absorption and photoluminescence studies of thin GaAs layers in GaAs-AlxGa1-xAs double heterostructures,” J. Appl. Phys. 45, 800–807 (1974).
[Crossref]

Sermarge, B.

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Shchekin, O. B.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Sherwin, M.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Shields, A. J.

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

Shih, K. K.

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloys system,” J. Appl. Phys. 47, 2604–2613 (1976).
[Crossref]

Small, A.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

Srinivasan, K.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

Stintz, A.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

Strauss, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Sturge, M. D.

M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127, 768–773 (1962).
[Crossref]

Sweet, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Tanabe, T.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Tawara, T.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Thierry-Mieg, V.

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

Tromborg, B.

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[Crossref]

Ulrich, S. M.

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

Ulrich, S.M.

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

Varoutsis, S.

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

Vuckovií, J.

J. Vučkovií, M. Pelton, A. Scherer, and Y. Yamamoto “Optimization of three-dimensional micro-post microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Weber, F. M.

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

Whitaker, N. A.

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

Wiersig, J.

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

Woollam, J.A.

WVase32 J.A. WoollamCo. Inc., Lincoln, USA.

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, Y.

J. Vučkovií, M. Pelton, A. Scherer, and Y. Yamamoto “Optimization of three-dimensional micro-post microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Yoshie, T.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

Zhang, Y.-H.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Zschiedrich, L.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive Finite Element Method for Simulation of Optical Nano Structures,” Phys. Status Solidi B,  244, 3419–3434 (2007).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano Resonators,” in Physics and Simulation of Optoelectronic Devices XIVM. Osinski, F. Henneberger, and Y. Arakawa, eds. SPIE 6115, 164–174 (2006).

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math.,  188, 12–32, (2006).
[Crossref]

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Appl. Phys. Lett. (10)

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005).
[Crossref]

F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, “Optical modes in pyramidal GaAs microcavities,” Appl. Phys. Lett. 90, 161104 (2007).
[Crossref]

M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, “Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities,” Appl. Phys. Lett. 92, 231105 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, “Observation of the Purcell effect in high-index-contrast micropillars,” Appl. Phys. Lett. 90, 191911 (2007).
[Crossref]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91, 011116 (2007).
[Crossref]

Ph. Lalanne, J. P. Hugonin, and J. M Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726–4728 (2004).
[Crossref]

G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, “Submicron-diameter semiconductor pillar micro-cavities with very high quality factors,” Appl. Phys. Lett. 90, 091120 (2007).
[Crossref]

J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett. 55, 22–24 (1989).
[Crossref]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity “Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources,” IEEE J. Quantum Electron. 43, 462–472 (2007).
[Crossref]

J. Appl. Phys. (3)

M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities,” J. Appl. Phys. 97, 023101 (2005).
[Crossref]

B. Monemar, K. K. Shih, and G. D. Pettit, “Some optical properties of the AlxGa1-xAs alloys system,” J. Appl. Phys. 47, 2604–2613 (1976).
[Crossref]

D. D. Sell and H. C. Casey, “Optical absorption and photoluminescence studies of thin GaAs layers in GaAs-AlxGa1-xAs double heterostructures,” J. Appl. Phys. 45, 800–807 (1974).
[Crossref]

J. Comput Appl. Math. (1)

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math.,  188, 12–32, (2006).
[Crossref]

Nature (London) (2)

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[Crossref]

Nature Physics (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics 2, 81–90 (2006).
[Crossref]

New J. Phys. (1)

M. Benyoucef, S.M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, “Enhanced correlated photon pair emission from a pillar microcavity,” New J. Phys. 6, 91 (2004).
[Crossref]

Opt. Express (1)

Phys. Rev. (2)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127, 768–773 (1962).
[Crossref]

Phys. Rev. A (1)

J. Vučkovií, M. Pelton, A. Scherer, and Y. Yamamoto “Optimization of three-dimensional micro-post microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
[Crossref]

Phys. Rev. B (2)

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[Crossref]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
[Crossref]

Phys. Rev. Lett. (4)

J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[Crossref]

G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, “Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields,” Phys. Rev. Lett. 94, 157401 (2005).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive Finite Element Method for Simulation of Optical Nano Structures,” Phys. Status Solidi B,  244, 3419–3434 (2007).
[Crossref]

Proc. SPIE (1)

S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher “Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation,” Proc. SPIE 5992, 378–289 (2005).

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000).
[Crossref] [PubMed]

SPIE (1)

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano Resonators,” in Physics and Simulation of Optoelectronic Devices XIVM. Osinski, F. Henneberger, and Y. Arakawa, eds. SPIE 6115, 164–174 (2006).

Other (2)

WVase32 J.A. WoollamCo. Inc., Lincoln, USA.

T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, “Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490–492.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of a pillar with all relevant parameters. Parameters taken into account here are the sidewall inclination φ, the cavity radius rcavity , the number of mirror pairs above and below the cavity, n bilayers,bottom and n bilayers,top , as well as the etching depth detch .

Fig. 2.
Fig. 2.

Convergence of the finite element method for a resonance frequency. The solid line represents the relative error and the dashed line represents a reference line with a gradient of -3.

Fig. 3.
Fig. 3.

Simulation (top) and experimental data (bottom) of a micro-pillar with a diameter of 4.8μm and 25 DBR pairs. The inset shows the measured pillar fabricated by focused ion beam milling [9].

Fig. 4.
Fig. 4.

Variation of imaginary part of GaAs permittivity: absorption limits the maximum Q factor.

Fig. 5.
Fig. 5.

Q factors for micro-pillars of different diameters (top). Top and bottom DBRs are equal, i.e., 20 or 30 pairs each. The thicknesses of the layer structure are either matched to the effective refractive index n eff of the fundamental mode or not. The lines are guides to the eye. For small diameters the resonance wavelength of the fundamental mode shifts to higher energies (bottom).

Fig. 6.
Fig. 6.

Color coded plot of normalized electrical field intensity of the fundamental mode in a cross section of the micro-pillar: (a) Micro-pillar with 30 top and bottom DBR pairs and a diameter of 1.33μm. (b-c) Micro-pillars with 25 top and bottom DBR pairs, a diameter of 3.3μm in the center of the cavity and a sidewall inclination of 0° and 2.2°, respectively; in addition to the contour the initial grid (before any refinements) is shown on the right halves.

Fig. 7.
Fig. 7.

Q factors for micro-pillars with tilted sidewalls for 20, 25, and 30 DBR pairs (top). The pillar diameter is fixed to 3.3μm at the center of the cavity. At the bottom the ratio of electric field energy in the DBR pairs normalized to the energy in the cavity at resonance (949.66 nm) is shown for 25 and 30 DBR pairs. Note the breaks in the scale.

Fig. 8.
Fig. 8.

Q factors for micro-pillars with a diameter of 3.3μm. (a) Variation of top and bottom DBR pairs simultaneously with or without absorption in the cavity material (GaAs). (b) Variation of top DBR pairs with fixed number of bottom DBR pairs.

Fig. 9.
Fig. 9.

Q factors obtained from eigenvalue calculations for micro-pillars with a diameter of 2.0μm. Top and bottom DBR pairs are fixed to 20, 25 and 30, respectively while the etching depth (measured in units of DBR pairs) into the bottom DBR is varied from 0 up to the total number of bottom DBR pairs.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε1×μ1×Eω2E=0.
ε1×μ1×E=ω2EinΩ,
ε1×μ1×Eout=ω2Eout in n \ Ω ,
(μ1×Eout)×n=(μ1×E)×non(Ω)
Eout×n=E×non (Ω)
Wel,j=Djweld3r
wel=12εℜ(E)·(E).
(E)·(E)=14(E+E*)·(E+E*).
Wel,cavity=cavity(εcavityE)*·E4d3r.

Metrics