Abstract

Asymmetric Split Ring Resonators are known to exhibit resonant modes where the optical electric field is strongest near the ends of the arms, thereby increasing the sensitivity of spectral techniques such as surface enhanced Raman scattering (SERS). By producing asymmetry in the structures, the two arms of the ring produce distinct plasmonic resonances related to their lengths – but are also affected by the presence of the other arm. This combination leads to a steepening of the slope of the reflection spectrum between the resonances that increases the sensitivity of the resonant behavior to the addition of different molecular species. We describe experimental results, supported by simulation, on the resonances of a series of circular split ring resonators with different gap and section lengths – at wavelengths in the mid-infra red regions of the spectrum - and their utilization for highly sensitive detection of organic compounds. We have used thin films of PMMA with different thicknesses, resulting in characteristic shifts from the original resonance. We also demonstrate matching of asymmetric split ring resonators to a molecular resonance of PMMA.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl Phys Lett. 91, 184102-1 – 184102-3 (2007).
    [CrossRef]
  2. C. Debus and P. H. Bolivar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE. 6987, 6987(OU-1-8) (2008).
  3. V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
    [CrossRef]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
    [CrossRef] [PubMed]
  5. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
    [CrossRef]
  6. J. Aizpurua, T. Taubner, F. Javier Garcia de Abjo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16, 1529–1545 (2008).
    [CrossRef] [PubMed]
  7. F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
    [CrossRef] [PubMed]
  8. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
    [CrossRef]
  9. M. Nagel and H. Kurz, “Corrugated waveguide based genomic biochip for marker-free THz read-out,” Int. J.Infrared Millim. Waves 27, 517–529 (2006).
    [CrossRef]
  10. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
    [CrossRef]
  11. M. Nagel, P. Bolivar, and H Kurz., “Modular parallel-plate THz components for cost-efficient biosensing systems,” Semicond. Sci. Technol. 20, S281–S285 (2005).
    [CrossRef]
  12. E. M. Larsson, J. Alegret, M. Kä1l, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256–1263 (2007).
    [CrossRef] [PubMed]
  13. D.H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition1973), Chap. 2.
  14. A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and Spectral Characterization of Poly(Methyl Methacrylate)/Hydroxyapatite Composite for Biomedical Applications,” Trends Biomater. Artif. Organs,  1841–45 (2004).

2008 (4)

C. Debus and P. H. Bolivar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE. 6987, 6987(OU-1-8) (2008).

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

J. Aizpurua, T. Taubner, F. Javier Garcia de Abjo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16, 1529–1545 (2008).
[CrossRef] [PubMed]

2007 (4)

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

E. M. Larsson, J. Alegret, M. Kä1l, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef] [PubMed]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl Phys Lett. 91, 184102-1 – 184102-3 (2007).
[CrossRef]

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
[CrossRef]

2006 (1)

M. Nagel and H. Kurz, “Corrugated waveguide based genomic biochip for marker-free THz read-out,” Int. J.Infrared Millim. Waves 27, 517–529 (2006).
[CrossRef]

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

M. Nagel, P. Bolivar, and H Kurz., “Modular parallel-plate THz components for cost-efficient biosensing systems,” Semicond. Sci. Technol. 20, S281–S285 (2005).
[CrossRef]

2004 (1)

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and Spectral Characterization of Poly(Methyl Methacrylate)/Hydroxyapatite Composite for Biomedical Applications,” Trends Biomater. Artif. Organs,  1841–45 (2004).

2000 (1)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Aizpurua, J.

J. Aizpurua, T. Taubner, F. Javier Garcia de Abjo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16, 1529–1545 (2008).
[CrossRef] [PubMed]

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

Alegret, J.

E. M. Larsson, J. Alegret, M. Kä1l, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef] [PubMed]

Balamurugan, A.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and Spectral Characterization of Poly(Methyl Methacrylate)/Hydroxyapatite Composite for Biomedical Applications,” Trends Biomater. Artif. Organs,  1841–45 (2004).

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

Bolivar, P.

M. Nagel, P. Bolivar, and H Kurz., “Modular parallel-plate THz components for cost-efficient biosensing systems,” Semicond. Sci. Technol. 20, S281–S285 (2005).
[CrossRef]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE. 6987, 6987(OU-1-8) (2008).

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl Phys Lett. 91, 184102-1 – 184102-3 (2007).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Bosserhoff, A.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Brehm, M.

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Büttner, R.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Cornelius, T.W.

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

Debus, C.

C. Debus and P. H. Bolivar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE. 6987, 6987(OU-1-8) (2008).

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl Phys Lett. 91, 184102-1 – 184102-3 (2007).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

Fedetov, V. A.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
[CrossRef]

Fleming, I.

D.H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition1973), Chap. 2.

Freymann, G.V.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Garcia-Etxarri, A.

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

Hayashi, A.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Hayashi, S.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Hillenbrand, R.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

Javier Garcia de Abjo, F.

Kä1l, M.

E. M. Larsson, J. Alegret, M. Kä1l, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef] [PubMed]

Kannan, S.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and Spectral Characterization of Poly(Methyl Methacrylate)/Hydroxyapatite Composite for Biomedical Applications,” Trends Biomater. Artif. Organs,  1841–45 (2004).

Karim, S.

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

Kato, E.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Kawai, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Kawase, K.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Kurz, H

M. Nagel, P. Bolivar, and H Kurz., “Modular parallel-plate THz components for cost-efficient biosensing systems,” Semicond. Sci. Technol. 20, S281–S285 (2005).
[CrossRef]

Kurz, H.

M. Nagel and H. Kurz, “Corrugated waveguide based genomic biochip for marker-free THz read-out,” Int. J.Infrared Millim. Waves 27, 517–529 (2006).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Kä1l, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef] [PubMed]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Miyamaru, F.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Nagel, M.

M. Nagel and H. Kurz, “Corrugated waveguide based genomic biochip for marker-free THz read-out,” Int. J.Infrared Millim. Waves 27, 517–529 (2006).
[CrossRef]

M. Nagel, P. Bolivar, and H Kurz., “Modular parallel-plate THz components for cost-efficient biosensing systems,” Semicond. Sci. Technol. 20, S281–S285 (2005).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

Neubrech, F.

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

Ogawa, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

Otani, C.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Papasimakis, N.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
[CrossRef]

Pucci, A.

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

Rajeswari, S.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and Spectral Characterization of Poly(Methyl Methacrylate)/Hydroxyapatite Composite for Biomedical Applications,” Trends Biomater. Artif. Organs,  1841–45 (2004).

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

Selvaraj, V.

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and Spectral Characterization of Poly(Methyl Methacrylate)/Hydroxyapatite Composite for Biomedical Applications,” Trends Biomater. Artif. Organs,  1841–45 (2004).

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Sutherland, D. S.

E. M. Larsson, J. Alegret, M. Kä1l, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef] [PubMed]

Taubner, T.

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Williams, D.H.

D.H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition1973), Chap. 2.

Yoshida, H.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Zheludev, N. I.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

Appl Phys Lett. (1)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl Phys Lett. 91, 184102-1 – 184102-3 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901-1-3 (2007).
[CrossRef]

Int. J.Infrared Millim. Waves (1)

M. Nagel and H. Kurz, “Corrugated waveguide based genomic biochip for marker-free THz read-out,” Int. J.Infrared Millim. Waves 27, 517–529 (2006).
[CrossRef]

Nano Lett. (1)

E. M. Larsson, J. Alegret, M. Kä1l, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef] [PubMed]

Nature Materials (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nature Materials 7, 543 – 546 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Phys Rev Lett. (2)

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys Rev Lett. 99, 147401-1-4 (2007).
[CrossRef]

F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection,” Phys Rev Lett. 101, 157403-1-4 (2008).
[CrossRef] [PubMed]

Proc. SPIE. (1)

C. Debus and P. H. Bolivar, “Terahertz biosensors based on double split ring arrays,” Proc. SPIE. 6987, 6987(OU-1-8) (2008).

Semicond. Sci. Technol. (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–280 (2005).
[CrossRef]

M. Nagel, P. Bolivar, and H Kurz., “Modular parallel-plate THz components for cost-efficient biosensing systems,” Semicond. Sci. Technol. 20, S281–S285 (2005).
[CrossRef]

Trends Biomater. Artif. Organs (1)

A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, “Development and Spectral Characterization of Poly(Methyl Methacrylate)/Hydroxyapatite Composite for Biomedical Applications,” Trends Biomater. Artif. Organs,  1841–45 (2004).

Other (1)

D.H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition1973), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SEM micrograph of A-SRRs with diameter 1.2 μm and 100 nm strip width.

Fig. 2.
Fig. 2.

A single unit cell with optimized dimensions, showing the orientation of the E-field parallel to the Y axis. Measurements have been carried out at normal incidence.

Fig. 3.
Fig. 3.

Table showing the reflectance spectra of the different SRR patterns. The first column shows SEM images of the (a) S-SRR1 (θ~10°) (b) A-SRR1 (θ~15°) (c) A-SRR2 (θ°25°) (d) A-SRR3 (θ°35°) (e) A-SRR4 (θ~45°) (f) A-SRR5 (θ~55°) patterns. The second column of figures, with solid curves, shows the consequent experimental spectra – and the third column of figures, with dashed curves, show corresponding simulations.

Fig. 4.
Fig. 4.

The experimental reflection spectrum of A-SRR2 plotted as a function of frequency. The trough obtained at 68 THz is similar to the trapped mode observed in the microwave frequency range in reference [3].

Fig. 5.
Fig. 5.

Electric field strength in the Y direction at different wavelengths corresponding to the peaks and troughs in the simulation of Fig. 3(c).

Fig. 6.
Fig. 6.

Table depicting the shift in the position of the resonance produced by loading the A-SRR array with a 100 nm thick layer of PMMA. The first row with solid lines depicts the experimental results. The second row, with dashed lines in the figures, depicts the corresponding simulations. The black curves show the original resonance without PMMA and the red curves show the resonance with 100nm of PMMA deposited on top.

Fig. 7.
Fig. 7.

Showing the shift in the position of the A-SRR2 longer wavelength resonance as a function of the thickness of the PMMA layer (solid line is a guide to the eye).

Fig. 8.
Fig. 8.

The increase in sensitivity of PMMA obtained by matching the resonances. The black curve shows the original resonance without the PMMA - and the red curve shows the resonance with 100nm of PMMA deposited on top.

Metrics