Abstract

We demonstrate an all-fiber turnkey source of extremely stable 2-cycle pulses at a center wavelength of 1.17 μm. Taylor-cut highly nonlinear germano-silica bulk fibers (HNFs) provide smooth supercontinua with a bandwidth of 560 nm and a spectral shape precisely controlled by the dispersion of the fiber and the phase of the 1.55 μm pump pulses. Alternatively these fibers are capable of generating pulses with central wavelengths continuously tunable from 0.9 μm up to 1.4 μm. These results are based on parameter-free simulations of nonlinear pulse propagation including higher-order dispersion as well as instantaneous Kerr and retarded Raman contributions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
    [CrossRef] [PubMed]
  2. C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, "Ultrabroadband detection of multi-THz field transients with GaSe electro-optic sensors: approaching the near infrared," Appl. Phys. Lett. 85, 3360-3362 (2004).
    [CrossRef]
  3. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
    [CrossRef]
  4. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, "Controlled waveforms on the single-cycle scale from a femtosecond oscillator," Opt. Express 16, 9739-9745 (2008).
    [CrossRef] [PubMed]
  5. L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
    [CrossRef]
  6. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  7. A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  8. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  9. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  10. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 μm," Opt. Express 12, 5697-5702 (2004).
    [CrossRef] [PubMed]
  11. J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
    [CrossRef]
  12. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
    [CrossRef]
  13. F. Tauser, F. Adler, and A. Leitenstorfer, "Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source," Opt. Lett. 29, 516-518 (2004).
    [CrossRef] [PubMed]
  14. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, "Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch femtosecond Er:fiber laser," Opt. Lett. 32, 3504-3506 (2007).
    [CrossRef] [PubMed]
  15. D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
    [CrossRef]
  16. P. V. Mamyshev und S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990).
    [CrossRef] [PubMed]
  17. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989).
    [CrossRef]
  18. R. Trebino and D. J. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
    [CrossRef]
  19. K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
    [CrossRef] [PubMed]

2008 (2)

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, "Controlled waveforms on the single-cycle scale from a femtosecond oscillator," Opt. Express 16, 9739-9745 (2008).
[CrossRef] [PubMed]

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
[CrossRef]

2007 (1)

2006 (2)

J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
[CrossRef]

K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
[CrossRef] [PubMed]

2004 (4)

2002 (2)

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

2001 (1)

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

2000 (1)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

1999 (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

1997 (1)

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

1993 (2)

1990 (1)

1989 (1)

Adler, F.

Binhammer, T.

Birks, T. A.

Brabec, T.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Chernikov, S. V.

Ell, R.

Ferencz, K.

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Ferrando-May, E.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
[CrossRef]

Gallmann, L.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Gopinath, J. T.

Gordon, J. P.

Goto, T.

J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Harth, A.

Hasegawa, T.

Haus, H. A.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hori, T.

Huber, R.

F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, "Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch femtosecond Er:fiber laser," Opt. Lett. 32, 3504-3506 (2007).
[CrossRef] [PubMed]

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, "Ultrabroadband detection of multi-THz field transients with GaSe electro-optic sensors: approaching the near infrared," Appl. Phys. Lett. 85, 3360-3362 (2004).
[CrossRef]

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Ippen, E. P.

Jeromin, A.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
[CrossRef]

Kane, D. J.

Kärtner, F. X.

Keller, U.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Kim, J.

Knight, J. C.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Krausz, F.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Kübler, C.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, "Ultrabroadband detection of multi-THz field transients with GaSe electro-optic sensors: approaching the near infrared," Appl. Phys. Lett. 85, 3360-3362 (2004).
[CrossRef]

Leitenstorfer, A.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
[CrossRef]

F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, "Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch femtosecond Er:fiber laser," Opt. Lett. 32, 3504-3506 (2007).
[CrossRef] [PubMed]

K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
[CrossRef] [PubMed]

F. Tauser, F. Adler, and A. Leitenstorfer, "Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source," Opt. Lett. 29, 516-518 (2004).
[CrossRef] [PubMed]

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, "Ultrabroadband detection of multi-THz field transients with GaSe electro-optic sensors: approaching the near infrared," Appl. Phys. Lett. 85, 3360-3362 (2004).
[CrossRef]

Lenzner, M.

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Mamyshev, P. V.

Man, T.-P. M.

Matuschek, N.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Morgner, U.

Moutzouris, K.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
[CrossRef]

K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
[CrossRef] [PubMed]

Nagashima, T.

Nelson, L. E.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Nishizawa, N.

J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

Ortigosa-Blanch, A.

Poppe, A.

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Rausch, S.

Russell, P. St. J.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Sell, A.

Shen, H. M.

Sotier, F.

Sotobayashi, H.

Spielmann, C.

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Steinmeyer, G.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Stingl, A.

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Stolen, R. H.

Sugimoto, N.

Sugiura, T.

J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
[CrossRef]

Sutter, D. H.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Takayanagi, J.

J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
[CrossRef]

Tamura, K.

Tauser, F.

Tempea, G.

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Tomlinson, W. J.

Träutlein, D.

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
[CrossRef]

K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, "Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source," Opt. Lett. 31, 1148-1150 (2006).
[CrossRef] [PubMed]

Trebino, R.

Tübel, S.

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, "Ultrabroadband detection of multi-THz field transients with GaSe electro-optic sensors: approaching the near infrared," Appl. Phys. Lett. 85, 3360-3362 (2004).
[CrossRef]

Wadsworth, W. J.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Xu, L.

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Yoshida, M.

J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004).
[CrossRef]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Appl. Phys. B (1)

L. Xu, G. Tempea, A. Poppe, M. Lenzner, C. Spielmann, F. Krausz, A. Stingl, and K. Ferencz, "High-power sub-10-fs ti:sapphire oscillators," Appl. Phys. B 65, 151-159 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, "Ultrabroadband detection of multi-THz field transients with GaSe electro-optic sensors: approaching the near infrared," Appl. Phys. Lett. 85, 3360-3362 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Takayanagi, N. Nishizawa, T. Sugiura, M. Yoshida, and T. Goto, "Generation of Pedestal-Free 22-fs Ultrashort Pulse Using Highly Nonlinear Fiber and Reverse-Dispersion Fiber," IEEE J. Quantum Electron. 42, 287-291 (2006).
[CrossRef]

J. Biophoton. (1)

D. Träutlein, F. Adler, K. Moutzouris, A. Jeromin, A. Leitenstorfer, and E. Ferrando-May, "Highly versatile confocal microscopy system based on a tunable femtosecond Er : fiber source," J. Biophoton. 1, 53-61 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Science (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematical setup of the laser system. OSC: Er:fiber oscillator, Kerr rotation mode-locked [8]; EDFA: Er:fiber amplifier consisting of pre-stretch fiber, single-mode gain fiber and waveplates for polarization control [13]; SPS: silicon prism sequence for pre-chirp control; PF: pre-compression fiber with collimating lens; HNF: bulk highly nonlinear silica fiber for supercontinuum generation; PS: SF10 prism sequence.

Fig. 2.
Fig. 2.

(a) Output spectrum of tunable supercontinuum stage versus wavelength (top) and corresponding quantitative simulation employing retrieved pump spectrum and measured fiber dispersion (bottom); (b) experimental and (c) theoretical output spectra as functions of the pump pulse energy.

Fig. 3.
Fig. 3.

(a) Experimentally determined intensity of the short-wave peak versus wavelength for various fibers with differing zero dispersion wavelength λ ZD; (b) shortest experimental output peak wavelengths for various HNFs versus zero dispersion wavelength (squares) and theoretically predicted scaling of the dispersive wave central wavelength (solid line).

Fig. 4.
Fig. 4.

Simulated pulse propagation within fiber compressor; (a)-(c) precompression of the pulse in a standard telecom fiber PF; (d)-(f) compression within a dispersion optimized highly nonlinear fiber HNF; (a, d) temporal power profile and (b, e) spectral intensity of the pulse vs. propagation length; (c, f) evolution of the FWHM pulse width (black line), the effective nonlinearity N 2 mm (blue, dash-dotted) and the GVD (red, dashed) and TOD (green, dotted) effective length scales (see text for details).

Fig. 5.
Fig. 5.

(a) Parameter free simulation of the output spectrum for experimentally determined pump spectrum and dispersion properties of the optimized fiber compressor (black dots) and measured output spectrum (blue line) vs. wavelength; (b) dispersion D of the pre-compression fiber PF (red, dashed) and the highly nonlinear fiber HNF (blue line) vs. wavelength; (c) autocorrelation of the output pulses after recompression in an SF10 prism compressor (blue line) and simulated trace (black dots) derived from the spectrum and a polynomial phase fit.

Fig. 6.
Fig. 6.

Relative rms amplitude noise spectrum of an ultrabroadband continuum from a HNF (red line) after compression to a pulse duration of 8 fs and corresponding electronic detection noise floor (black line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

zAzτ=[α2iβ22τ2+iβ36τ3±]Azτ
+γ(iτω0)[Azτ+Azτ12R(ττ1)1]

Metrics