Abstract

In this article we report the synthesis of nanoparticles using femtosecond laser ablation with MHz pulse frequency at room temperature in air. Nanoparticles agglomerate by fusion, and form interweaving fibrous structures that show certain degree of self-assembly. It is found that there is a threshold-like pulse frequency at which fibrous nanoparticle aggregates start to form. The growth mechanism can be explained by existing theories regarding nanoparticle formation through femtosecond laser ablation. The threshold pulse frequency is in good agreement with the time to start nanoparticle formation, which has been derived numerically by previous analyses.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of mega-hertz repetition rate on the agglomerated particle size of femtosecond synthesized nanostructures

Mugunthan Sivayoganathan, Bo Tan, and Krishnan Venkatakrishnan
Opt. Mater. Express 2(8) 987-995 (2012)

Study of silicon nanofibrous structure formed by femtosecond laser irradiation in air

Sivakumar Manickam, Krishnan Venkatakrishnan, Bo Tan, and Venkat Venkataramanan
Opt. Express 17(16) 13869-13874 (2009)

Stoichiometry of laser ablated brass nanoparticles in water and air

D. N. Patel, Pramod K. Pandey, and Raj K. Thareja
Appl. Opt. 52(31) 7592-7601 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Ulmann, S. K. Friedlander, and A. S. chmidit-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
    [Crossref]
  2. S. Li, S. J. Silvers, and M. S. El-Shall, “Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique,” J. Phys. Chem. B. 101, 1794–1802 (1997).
    [Crossref]
  3. B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
    [Crossref]
  4. K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
    [Crossref]
  5. T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, “Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics,” Appl. Phys. B. 78, 995–1000 (2004).
    [Crossref]
  6. F. R. Sushmita and R. K. Thareja, “Simulation of cluster formation in laser-ablated silicon plumes,” J. Appl. Phys. 97, 123303 (2005).
    [Crossref]
  7. S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation,” Physics-Uspekhi 45, 293–324 (2002).
    [Crossref]
  8. T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.: Conf. Ser. 59, 445–448 (2007).
    [Crossref]
  9. J Perriére, C Boulmer-Leborgne, R. Benzerga, and S Tricot, “Nanoparticle formation by femosecond laser ablation,” J. Phys. D: Appl. Phys. 40, 7069–7076 (2007).
    [Crossref]

2007 (2)

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.: Conf. Ser. 59, 445–448 (2007).
[Crossref]

J Perriére, C Boulmer-Leborgne, R. Benzerga, and S Tricot, “Nanoparticle formation by femosecond laser ablation,” J. Phys. D: Appl. Phys. 40, 7069–7076 (2007).
[Crossref]

2006 (2)

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
[Crossref]

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

2005 (1)

F. R. Sushmita and R. K. Thareja, “Simulation of cluster formation in laser-ablated silicon plumes,” J. Appl. Phys. 97, 123303 (2005).
[Crossref]

2004 (1)

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, “Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics,” Appl. Phys. B. 78, 995–1000 (2004).
[Crossref]

2002 (2)

M. Ulmann, S. K. Friedlander, and A. S. chmidit-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[Crossref]

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation,” Physics-Uspekhi 45, 293–324 (2002).
[Crossref]

1997 (1)

S. Li, S. J. Silvers, and M. S. El-Shall, “Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique,” J. Phys. Chem. B. 101, 1794–1802 (1997).
[Crossref]

Ackerman, G. D.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, “Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics,” Appl. Phys. B. 78, 995–1000 (2004).
[Crossref]

Anisimov, S. I.

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation,” Physics-Uspekhi 45, 293–324 (2002).
[Crossref]

Benzerga, R.

J Perriére, C Boulmer-Leborgne, R. Benzerga, and S Tricot, “Nanoparticle formation by femosecond laser ablation,” J. Phys. D: Appl. Phys. 40, 7069–7076 (2007).
[Crossref]

Boulmer-Leborgne, C

J Perriére, C Boulmer-Leborgne, R. Benzerga, and S Tricot, “Nanoparticle formation by femosecond laser ablation,” J. Phys. D: Appl. Phys. 40, 7069–7076 (2007).
[Crossref]

Cary, J. E.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
[Crossref]

chmidit-Ott, A. S.

M. Ulmann, S. K. Friedlander, and A. S. chmidit-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[Crossref]

El-Shall, M. S.

S. Li, S. J. Silvers, and M. S. El-Shall, “Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique,” J. Phys. Chem. B. 101, 1794–1802 (1997).
[Crossref]

Friedlander, S. K.

M. Ulmann, S. K. Friedlander, and A. S. chmidit-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[Crossref]

Friend, C.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
[Crossref]

Glover, T. E.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, “Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics,” Appl. Phys. B. 78, 995–1000 (2004).
[Crossref]

Han, M.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.: Conf. Ser. 59, 445–448 (2007).
[Crossref]

Hotta, E.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

Kawamura, T.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

Lee, R. W.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, “Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics,” Appl. Phys. B. 78, 995–1000 (2004).
[Crossref]

Li, S.

S. Li, S. J. Silvers, and M. S. El-Shall, “Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique,” J. Phys. Chem. B. 101, 1794–1802 (1997).
[Crossref]

Luk’yanchuk, B. S.

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation,” Physics-Uspekhi 45, 293–324 (2002).
[Crossref]

Mazur, E.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
[Crossref]

Miyahara, H.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

Nishikawa, K.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

Okino, A.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

Perriére, J

J Perriére, C Boulmer-Leborgne, R. Benzerga, and S Tricot, “Nanoparticle formation by femosecond laser ablation,” J. Phys. D: Appl. Phys. 40, 7069–7076 (2007).
[Crossref]

Sheehy, M. A.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
[Crossref]

Silvers, S. J.

S. Li, S. J. Silvers, and M. S. El-Shall, “Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique,” J. Phys. Chem. B. 101, 1794–1802 (1997).
[Crossref]

Sushmita, F. R.

F. R. Sushmita and R. K. Thareja, “Simulation of cluster formation in laser-ablated silicon plumes,” J. Appl. Phys. 97, 123303 (2005).
[Crossref]

Takano, K.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

Takiya, T.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.: Conf. Ser. 59, 445–448 (2007).
[Crossref]

Thareja, R. K.

F. R. Sushmita and R. K. Thareja, “Simulation of cluster formation in laser-ablated silicon plumes,” J. Appl. Phys. 97, 123303 (2005).
[Crossref]

Tricot, S

J Perriére, C Boulmer-Leborgne, R. Benzerga, and S Tricot, “Nanoparticle formation by femosecond laser ablation,” J. Phys. D: Appl. Phys. 40, 7069–7076 (2007).
[Crossref]

Tull, B. R.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
[Crossref]

Ulmann, M.

M. Ulmann, S. K. Friedlander, and A. S. chmidit-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[Crossref]

Umezu, I.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.: Conf. Ser. 59, 445–448 (2007).
[Crossref]

Yaga, M.

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.: Conf. Ser. 59, 445–448 (2007).
[Crossref]

Young, D. A.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, “Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics,” Appl. Phys. B. 78, 995–1000 (2004).
[Crossref]

Appl. Phys. A. (1)

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, “Formation of silicon nanoparticles and weblike aggregates by femtosecond laser ablation in a background gas,” Appl. Phys. A. 83, 341–346 (2006).
[Crossref]

Appl. Phys. B. (1)

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, “Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics,” Appl. Phys. B. 78, 995–1000 (2004).
[Crossref]

Appl. Phys. Lett. (1)

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino, and E. Hotta, “Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses,” Appl. Phys. Lett. 89, 243112 (2006).
[Crossref]

J. Appl. Phys. (1)

F. R. Sushmita and R. K. Thareja, “Simulation of cluster formation in laser-ablated silicon plumes,” J. Appl. Phys. 97, 123303 (2005).
[Crossref]

J. Nanopart. Res. (1)

M. Ulmann, S. K. Friedlander, and A. S. chmidit-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[Crossref]

J. Phys. Chem. B. (1)

S. Li, S. J. Silvers, and M. S. El-Shall, “Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique,” J. Phys. Chem. B. 101, 1794–1802 (1997).
[Crossref]

J. Phys. D: Appl. Phys. (1)

J Perriére, C Boulmer-Leborgne, R. Benzerga, and S Tricot, “Nanoparticle formation by femosecond laser ablation,” J. Phys. D: Appl. Phys. 40, 7069–7076 (2007).
[Crossref]

J. Phys.: Conf. Ser. (1)

T. Takiya, I. Umezu, M. Yaga, and M. Han, “Nanoparticle formation in the expansion process of a laser ablated plume,” J. Phys.: Conf. Ser. 59, 445–448 (2007).
[Crossref]

Physics-Uspekhi (1)

S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation,” Physics-Uspekhi 45, 293–324 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Interweaving fibrous nanoparticle aggregate found after laser ablation of bulk silicon.

Fig. 2.
Fig. 2.

Fused nanoparticles

Fig. 3.
Fig. 3.

Fibrous silicon nanostructures formed by laser beam of 1030 nm wavelength, 200 fs pulse width and 11 W laser power at various pulse frequencies.

Fig. 4.
Fig. 4.

Fibrous nanostructures formed from materials from Group XIII and Group XIV materials. Laser beam wavelength is 515 nm, pulse frequency is 13 MHz, and laser power is 11w. Compound target material consists of tin, indium, lead, and bismuth.

Fig. 5.
Fig. 5.

Effect of laser fluence. Laser parameters: 1030 nm wavelength at 13 MHz pulse frequency

Metrics