Abstract

In this article we report the synthesis of nanoparticles using femtosecond laser ablation with MHz pulse frequency at room temperature in air. Nanoparticles agglomerate by fusion, and form interweaving fibrous structures that show certain degree of self-assembly. It is found that there is a threshold-like pulse frequency at which fibrous nanoparticle aggregates start to form. The growth mechanism can be explained by existing theories regarding nanoparticle formation through femtosecond laser ablation. The threshold pulse frequency is in good agreement with the time to start nanoparticle formation, which has been derived numerically by previous analyses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ulmann, S. K. Friedlander and A . Schmidit-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
    [CrossRef]
  2. S. Li, S. J. Silvers, and M. S. El-Shall, "Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique," J. Phys. Chem. B. 101, 1794-1802 (1997).
    [CrossRef]
  3. B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
    [CrossRef]
  4. K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
    [CrossRef]
  5. T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, "Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics," Appl. Phys. B. 78, 995-1000 (2004).
    [CrossRef]
  6. F. R. Sushmita and R. K. Thareja, "Simulation of cluster formation in laser-ablated silicon plumes," J. Appl. Phys. 97,123303 (2005).
    [CrossRef]
  7. S. I. Anisimov and B. S. Luk’yanchuk, "Selected problems of laser ablation," Phys. Usp. 45, 293-324 (2002).
    [CrossRef]
  8. T. Takiya, I. Umezu, M. Yaga, and M. Han, "Nanoparticle formation in the expansion process of a laser ablated plume," J. Phys.: Conf. Ser. 59, 445-448 (2007).
    [CrossRef]
  9. J Perrière, C Boulmer-Leborgne, R. Benzerga, and S Tricot, "Nanoparticle formation by femosecond laser ablation," J. Phys. D: Appl. Phys. 40, 7069-7076 (2007).
    [CrossRef]

2007 (2)

T. Takiya, I. Umezu, M. Yaga, and M. Han, "Nanoparticle formation in the expansion process of a laser ablated plume," J. Phys.: Conf. Ser. 59, 445-448 (2007).
[CrossRef]

J Perrière, C Boulmer-Leborgne, R. Benzerga, and S Tricot, "Nanoparticle formation by femosecond laser ablation," J. Phys. D: Appl. Phys. 40, 7069-7076 (2007).
[CrossRef]

2006 (2)

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
[CrossRef]

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

2005 (1)

F. R. Sushmita and R. K. Thareja, "Simulation of cluster formation in laser-ablated silicon plumes," J. Appl. Phys. 97,123303 (2005).
[CrossRef]

2004 (1)

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, "Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics," Appl. Phys. B. 78, 995-1000 (2004).
[CrossRef]

2002 (2)

M. Ulmann, S. K. Friedlander and A . Schmidit-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

S. I. Anisimov and B. S. Luk’yanchuk, "Selected problems of laser ablation," Phys. Usp. 45, 293-324 (2002).
[CrossRef]

1997 (1)

S. Li, S. J. Silvers, and M. S. El-Shall, "Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique," J. Phys. Chem. B. 101, 1794-1802 (1997).
[CrossRef]

Ackerman, G. D.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, "Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics," Appl. Phys. B. 78, 995-1000 (2004).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov and B. S. Luk’yanchuk, "Selected problems of laser ablation," Phys. Usp. 45, 293-324 (2002).
[CrossRef]

Benzerga, R.

J Perrière, C Boulmer-Leborgne, R. Benzerga, and S Tricot, "Nanoparticle formation by femosecond laser ablation," J. Phys. D: Appl. Phys. 40, 7069-7076 (2007).
[CrossRef]

Boulmer-Leborgne, C

J Perrière, C Boulmer-Leborgne, R. Benzerga, and S Tricot, "Nanoparticle formation by femosecond laser ablation," J. Phys. D: Appl. Phys. 40, 7069-7076 (2007).
[CrossRef]

Cary, J. E.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
[CrossRef]

El-Shall, M. S.

S. Li, S. J. Silvers, and M. S. El-Shall, "Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique," J. Phys. Chem. B. 101, 1794-1802 (1997).
[CrossRef]

Friedlander, S. K.

M. Ulmann, S. K. Friedlander and A . Schmidit-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

Friend, C.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
[CrossRef]

Glover, T. E.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, "Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics," Appl. Phys. B. 78, 995-1000 (2004).
[CrossRef]

Han, M.

T. Takiya, I. Umezu, M. Yaga, and M. Han, "Nanoparticle formation in the expansion process of a laser ablated plume," J. Phys.: Conf. Ser. 59, 445-448 (2007).
[CrossRef]

Hotta, E.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

Kawamura, T.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

Lee, R. W.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, "Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics," Appl. Phys. B. 78, 995-1000 (2004).
[CrossRef]

Li, S.

S. Li, S. J. Silvers, and M. S. El-Shall, "Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique," J. Phys. Chem. B. 101, 1794-1802 (1997).
[CrossRef]

Luk’yanchuk, B. S.

S. I. Anisimov and B. S. Luk’yanchuk, "Selected problems of laser ablation," Phys. Usp. 45, 293-324 (2002).
[CrossRef]

Mazur, E.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
[CrossRef]

Miyahara, H.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

Nishikawa, K.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

Okino, A.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

Perrière, J

J Perrière, C Boulmer-Leborgne, R. Benzerga, and S Tricot, "Nanoparticle formation by femosecond laser ablation," J. Phys. D: Appl. Phys. 40, 7069-7076 (2007).
[CrossRef]

Schmidit-Ott, A

M. Ulmann, S. K. Friedlander and A . Schmidit-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

Sheehy, M. A.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
[CrossRef]

Silvers, S. J.

S. Li, S. J. Silvers, and M. S. El-Shall, "Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique," J. Phys. Chem. B. 101, 1794-1802 (1997).
[CrossRef]

Sushmita, F. R.

F. R. Sushmita and R. K. Thareja, "Simulation of cluster formation in laser-ablated silicon plumes," J. Appl. Phys. 97,123303 (2005).
[CrossRef]

Takano, K.

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

Takiya, T.

T. Takiya, I. Umezu, M. Yaga, and M. Han, "Nanoparticle formation in the expansion process of a laser ablated plume," J. Phys.: Conf. Ser. 59, 445-448 (2007).
[CrossRef]

Thareja, R. K.

F. R. Sushmita and R. K. Thareja, "Simulation of cluster formation in laser-ablated silicon plumes," J. Appl. Phys. 97,123303 (2005).
[CrossRef]

Tricot, S

J Perrière, C Boulmer-Leborgne, R. Benzerga, and S Tricot, "Nanoparticle formation by femosecond laser ablation," J. Phys. D: Appl. Phys. 40, 7069-7076 (2007).
[CrossRef]

Tull, B. R.

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
[CrossRef]

Ulmann, M.

M. Ulmann, S. K. Friedlander and A . Schmidit-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

Umezu, I.

T. Takiya, I. Umezu, M. Yaga, and M. Han, "Nanoparticle formation in the expansion process of a laser ablated plume," J. Phys.: Conf. Ser. 59, 445-448 (2007).
[CrossRef]

Yaga, M.

T. Takiya, I. Umezu, M. Yaga, and M. Han, "Nanoparticle formation in the expansion process of a laser ablated plume," J. Phys.: Conf. Ser. 59, 445-448 (2007).
[CrossRef]

Young, D. A.

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, "Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics," Appl. Phys. B. 78, 995-1000 (2004).
[CrossRef]

Appl. Phys. A. (1)

B. R. Tull, J. E. Cary, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Appl. Phys. A. 83, 341-346 (2006).
[CrossRef]

Appl. Phys. B. (1)

T. E. Glover, G. D. Ackerman, R. W. Lee, and D. A. Young, "Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics," Appl. Phys. B. 78, 995-1000 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

K. Nishikawa, K. Takano, H. Miyahara, T. Kawamura, A. Okino and E. Hotta, "Nanofractal structure consisting of nanoparticles produced by ultrashort laser pulses," Appl. Phys. Lett. 89, 243112 (2006).
[CrossRef]

J. Appl. Phys. (1)

F. R. Sushmita and R. K. Thareja, "Simulation of cluster formation in laser-ablated silicon plumes," J. Appl. Phys. 97,123303 (2005).
[CrossRef]

J. Nanopart. Res. (1)

M. Ulmann, S. K. Friedlander and A . Schmidit-Ott, "Nanoparticle formation by laser ablation," J. Nanopart. Res. 4, 499-509 (2002).
[CrossRef]

J. Phys. Chem. B. (1)

S. Li, S. J. Silvers, and M. S. El-Shall, "Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals produced by a Laser Vaporization-Controlled Condensation Technique," J. Phys. Chem. B. 101, 1794-1802 (1997).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

J Perrière, C Boulmer-Leborgne, R. Benzerga, and S Tricot, "Nanoparticle formation by femosecond laser ablation," J. Phys. D: Appl. Phys. 40, 7069-7076 (2007).
[CrossRef]

J. Phys.: Conf. Ser. (1)

T. Takiya, I. Umezu, M. Yaga, and M. Han, "Nanoparticle formation in the expansion process of a laser ablated plume," J. Phys.: Conf. Ser. 59, 445-448 (2007).
[CrossRef]

Phys.Usp. (1)

S. I. Anisimov and B. S. Luk’yanchuk, "Selected problems of laser ablation," Phys. Usp. 45, 293-324 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Interweaving fibrous nanoparticle aggregate found after laser ablation of bulk silicon.

Fig. 2.
Fig. 2.

Fused nanoparticles

Fig. 3.
Fig. 3.

Fibrous silicon nanostructures formed by laser beam of 1030 nm wavelength, 200 fs pulse width and 11 W laser power at various pulse frequencies.

Fig. 4.
Fig. 4.

Fibrous nanostructures formed from materials from Group XIII and Group XIV materials. Laser beam wavelength is 515 nm, pulse frequency is 13 MHz, and laser power is 11w. Compound target material consists of tin, indium, lead, and bismuth.

Fig. 5.
Fig. 5.

Effect of laser fluence. Laser parameters: 1030 nm wavelength at 13 MHz pulse frequency

Metrics