Abstract

We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at 655nm. The paired photons are emitted at the telecom wavelength of 1310nm within a bandwidth of 0.7nm. The quantum properties of the pairs are measured using a two-photon coalescence experiment showing a visibility of 85%. The evaluated source brightness, on the order of 105 pairs s −1 GHz −1 mW −1, associated with its compactness and reliability, demonstrates the source’s high potential for long-distance quantum communication.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Weihs and W. Tittel, "Photonic entanglement for fundamental tests and quantum communication," Quantum Inf. Comput. 1, 3-56 (2001).
  2. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
    [CrossRef]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  4. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
    [CrossRef]
  5. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
    [CrossRef]
  6. P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
    [CrossRef]
  8. M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
    [CrossRef]
  9. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
    [CrossRef] [PubMed]
  10. T. Suhara, H. Okabe, M. Fujimura, "Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device," IEEE Photon. Technol. Lett. 19, 1093-1095 (2007).
    [CrossRef]
  11. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide," Opt. Express 15, 12769-12776 (2007), >http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-20-12769.
    [CrossRef] [PubMed]
  12. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett.  59, 2044-2047 (1987).
    [CrossRef] [PubMed]
  13. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
    [CrossRef]
  14. W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999).
    [CrossRef]
  15. A. Zeilinger, H. J. Bernstein, and M. A. Horne, "Information transfer with two-state two-particle quantum systems," J. Mod. Opt. 41, 2375-2384 (1994).
    [CrossRef]
  16. H. Kim, J. Ko, and T. Kim, "Two-particle interference experiment with frequency-entangled photon pairs," J. Opt. Soc. Am. B 20, 760-763 (2003).
    [CrossRef]
  17. A. Eckstein and C. Silberhorn, "Broadband frequency mode entanglement in waveguided PDC," arxiv 0806.1961 (2008), http://arxiv.org/abs/0806.1961.
  18. R. Okamoto, S. Takeuchi, and K. Sasaki, "Tailoring two-photon interference with phase dispersion," Phys. Rev. A 74, 011801(R) (2006).interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
    [CrossRef]

2008 (1)

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

2007 (3)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

T. Suhara, H. Okabe, M. Fujimura, "Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device," IEEE Photon. Technol. Lett. 19, 1093-1095 (2007).
[CrossRef]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide," Opt. Express 15, 12769-12776 (2007), >http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-20-12769.
[CrossRef] [PubMed]

2004 (1)

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
[CrossRef] [PubMed]

2003 (2)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
[CrossRef]

H. Kim, J. Ko, and T. Kim, "Two-particle interference experiment with frequency-entangled photon pairs," J. Opt. Soc. Am. B 20, 760-763 (2003).
[CrossRef]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

2001 (2)

G. Weihs and W. Tittel, "Photonic entanglement for fundamental tests and quantum communication," Quantum Inf. Comput. 1, 3-56 (2001).

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

1999 (2)

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

1994 (1)

A. Zeilinger, H. J. Bernstein, and M. A. Horne, "Information transfer with two-state two-particle quantum systems," J. Mod. Opt. 41, 2375-2384 (1994).
[CrossRef]

1987 (1)

R. Okamoto, S. Takeuchi, and K. Sasaki, "Tailoring two-photon interference with phase dispersion," Phys. Rev. A 74, 011801(R) (2006).interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Baldi, P.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Bernstein, H. J.

A. Zeilinger, H. J. Bernstein, and M. A. Horne, "Information transfer with two-state two-particle quantum systems," J. Mod. Opt. 41, 2375-2384 (1994).
[CrossRef]

Beveratos, A.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

Brendel, J.

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999).
[CrossRef]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

De Micheli, M. P.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

de Riedmatten, H.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
[CrossRef]

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Fujii, G.

Fujimura, M.

T. Suhara, H. Okabe, M. Fujimura, "Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device," IEEE Photon. Technol. Lett. 19, 1093-1095 (2007).
[CrossRef]

Gisin, N.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999).
[CrossRef]

Halder, M.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Horne, M. A.

A. Zeilinger, H. J. Bernstein, and M. A. Horne, "Information transfer with two-state two-particle quantum systems," J. Mod. Opt. 41, 2375-2384 (1994).
[CrossRef]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Inoue, S.

Jorel, C.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

Kim, H.

Kim, T.

Ko, J.

Kurimura, S.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Marcikic, I.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
[CrossRef]

Mattel, K.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Motoya, M.

Namekata, N.

Okabe, H.

T. Suhara, H. Okabe, M. Fujimura, "Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device," IEEE Photon. Technol. Lett. 19, 1093-1095 (2007).
[CrossRef]

Okamoto, R.

R. Okamoto, S. Takeuchi, and K. Sasaki, "Tailoring two-photon interference with phase dispersion," Phys. Rev. A 74, 011801(R) (2006).interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Sasaki, K.

R. Okamoto, S. Takeuchi, and K. Sasaki, "Tailoring two-photon interference with phase dispersion," Phys. Rev. A 74, 011801(R) (2006).interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef]

Scarani, V.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Simon, C.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

Suhara, T.

T. Suhara, H. Okabe, M. Fujimura, "Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device," IEEE Photon. Technol. Lett. 19, 1093-1095 (2007).
[CrossRef]

Takeuchi, S.

R. Okamoto, S. Takeuchi, and K. Sasaki, "Tailoring two-photon interference with phase dispersion," Phys. Rev. A 74, 011801(R) (2006).interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef]

Tanzilli, S.

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Thew, R.T.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

Tittel, W.

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

G. Weihs and W. Tittel, "Photonic entanglement for fundamental tests and quantum communication," Quantum Inf. Comput. 1, 3-56 (2001).

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999).
[CrossRef]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Weihs, G.

G. Weihs and W. Tittel, "Photonic entanglement for fundamental tests and quantum communication," Quantum Inf. Comput. 1, 3-56 (2001).

Weinfurter, H.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Zbinden, H.

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

A. Zeilinger, H. J. Bernstein, and M. A. Horne, "Information transfer with two-state two-particle quantum systems," J. Mod. Opt. 41, 2375-2384 (1994).
[CrossRef]

Electron. Lett. (1)

S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Suhara, H. Okabe, M. Fujimura, "Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device," IEEE Photon. Technol. Lett. 19, 1093-1095 (2007).
[CrossRef]

J. Mod. Opt. (1)

A. Zeilinger, H. J. Bernstein, and M. A. Horne, "Information transfer with two-state two-particle quantum systems," J. Mod. Opt. 41, 2375-2384 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (1)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein.
[CrossRef]

New J. Phys. (1)

M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein.
[CrossRef]

Opt. Express (1)

Phys. (1)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein.
[CrossRef]

Phys. Rev. A (2)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

R. Okamoto, S. Takeuchi, and K. Sasaki, "Tailoring two-photon interference with phase dispersion," Phys. Rev. A 74, 011801(R) (2006).interference," Phys. Rev. Lett. 59, 2044-2047 (1987).
[CrossRef]

Quantum Inf. Comput. (1)

G. Weihs and W. Tittel, "Photonic entanglement for fundamental tests and quantum communication," Quantum Inf. Comput. 1, 3-56 (2001).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other (2)

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett.  59, 2044-2047 (1987).
[CrossRef] [PubMed]

A. Eckstein and C. Silberhorn, "Broadband frequency mode entanglement in waveguided PDC," arxiv 0806.1961 (2008), http://arxiv.org/abs/0806.1961.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the polarization entangled photon-pair source at 1310 nm. An external cavity diode laser at 655nm (Toptica Photonics DL100, ΔνMHz, H-polarized) is employed to pump a Ti-indiffused PPLN waveguide in the CW regime; A prism (P) is used to remove the infrared light coming from the laser. A set of lenses (L) are used to couple light in and out of the waveguide. The association of a high-pass filter (HPF, cut-off at 1000nm, T = 90%) and a bandpass filter (BPF, 1310nm, Δλ= 10nm, T = 70%) allows removing the residual pump photons. Finally, a 50/50 beam-splitter (BS) enables separating the paired photons, revealing entanglement in the coincidence basis. For characterization, we use two passively-quenched Ge-APDs connected to an AND-gate (&) for coincidence counting.

Fig. 2.
Fig. 2.

Left: fluorescence spectra for various poling periods out of 7μm-wide waveguides obtained in the single photon counting regime. For all these curves, the temperature of the sample is 70°C and the pump wavelength is 655nm. Right: QPM curve as a function of the poling period ranging from 6.50 to 6.65μm with steps of 0.05 μm. The straight line is a guide for the eye.

Fig. 3.
Fig. 3.

QPM curve as function of the temperature for Λ = 6.60 μm. The degeneracy point can be reached by fine tuning of the temperature up to 72°C. Note that before degeneracy, the longest wavelength is associated with the V polarization mode, and the shortest to the H polarization, and vice-versa beyond degeneracy. The straight line is a guide for the eye.

Fig. 4.
Fig. 4.

Two-photon interference experiment. The two polarization modes are first separated using a polarization beam-splitter (PBS). A retroreflector (R) placed in one arm is employed to adjust the relative delay of the two photons. After being coupled into single mode optical fibers, these photons are recombined at a 50/50 coupler (BS) where quantum interference occurs. Note that both polarization modes are adjusted to be identical using fiber-optics polarization controllers (PC) in front of the coupler. The overall losses of the interferometer were estimated to be of 5.5 dB.

Fig. 5.
Fig. 5.

Net coincidence and single counting rates at the output of the 50/50 beam-splitter as function of the relative length of the two arms. Here the position of dip is linked to the relative separation experienced by the H and V photons in the generator due to their different group velocities. The dip exhibits a net visibility of 85% and a width of 1.5mm FWHM for a temperature of 71.64°C.

Fig. 6.
Fig. 6.

Coincidence rate at the output of the 50/50 beam-splitter as function of the relative length of the two arms for various phase matching conditions leading to photons near degeneracy (Δλ = λH - λV ≤ 0.7 nm). It is then interesting to note the decrease of the overall visibility, from (a) to (d), as the single photon wavelengths are tuned away from degeneracy by an increase of the crystal temperature from 72 to 73°C.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ±=12[H1V2±V1H2]12 [0112±1102] ,
{ωp=ωs+ωikp=ks+ki+2πΛ·u,
Hp SPDC η Hs Vi BS η * 12 [HaVa+HbVb+HaVb+VaHb]
Coinc.η*12[HaVb+VaHb],
𝓣delay =LWG·ΔnLiNbO32c 5 ps ,
𝓣coh =0.44×1cλ2Δλ3.6ps.
ωp2+δωH ωp2δωV +ei2δωδωc ωp2δωH ωp2+δωV

Metrics