Abstract

We present a material composite consisting of randomly oriented elements governed by non-resonant interactions. By exploiting near-field plasmonic interaction in a dense ensemble of subwavelength-sized dielectric and metallic particles, we reveal that the group refractive index of the composite can be increased to be larger than the effective refractive indices of constituent metallic and dielectric parent composites. These findings introduce a new class of engineered photonic materials having customizable and atypical optical constants.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  2. K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent plasmonic enhanced terahertz transmission through random metallic media," Phys Rev. Lett. 94,173904 (2005).
    [CrossRef] [PubMed]
  3. K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
    [CrossRef]
  4. K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
    [CrossRef] [PubMed]
  5. K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
    [CrossRef]
  6. K. J. Chau, Mark Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
    [CrossRef] [PubMed]
  7. T. C. Choy, Effective medium theory: principles and applications (Oxford University Press, New York, 1999).
  8. G. W. Milton, The theory of composites (Cambridge University Press, New York, 2002).
    [CrossRef]
  9. S. Mujumdar, K. J. Chau, and A. Y. Elezzabi, "Experimental and numerical investigation of terahertz transmission through strongly scattering sub-wavelength size spheres," Appl. Phys. Lett. 85, 6284-6286 (2004).
    [CrossRef]
  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995), Vol. 25.
  11. M. A. Ordal et al, "Optical properties of fourteen metals in the infrared and far infrared - Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Opt. 24, 4493 (1985).
    [CrossRef] [PubMed]
  12. D. Grischkowsky et al., "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  13. J. F. Holzman et al., "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," Appl. Phys. Lett. 87, 2294-2298 (2002).
    [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

2007 (2)

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

K. J. Chau, Mark Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

2006 (1)

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

2005 (3)

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent plasmonic enhanced terahertz transmission through random metallic media," Phys Rev. Lett. 94,173904 (2005).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

2004 (1)

S. Mujumdar, K. J. Chau, and A. Y. Elezzabi, "Experimental and numerical investigation of terahertz transmission through strongly scattering sub-wavelength size spheres," Appl. Phys. Lett. 85, 6284-6286 (2004).
[CrossRef]

2002 (1)

J. F. Holzman et al., "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," Appl. Phys. Lett. 87, 2294-2298 (2002).
[CrossRef]

1990 (1)

1985 (1)

Atwater, H. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Baron, C. A.

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

Chau, K. J.

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

K. J. Chau, Mark Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent plasmonic enhanced terahertz transmission through random metallic media," Phys Rev. Lett. 94,173904 (2005).
[CrossRef] [PubMed]

S. Mujumdar, K. J. Chau, and A. Y. Elezzabi, "Experimental and numerical investigation of terahertz transmission through strongly scattering sub-wavelength size spheres," Appl. Phys. Lett. 85, 6284-6286 (2004).
[CrossRef]

Dice, G. D.

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent plasmonic enhanced terahertz transmission through random metallic media," Phys Rev. Lett. 94,173904 (2005).
[CrossRef] [PubMed]

Elezzabi, A. Y.

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent plasmonic enhanced terahertz transmission through random metallic media," Phys Rev. Lett. 94,173904 (2005).
[CrossRef] [PubMed]

S. Mujumdar, K. J. Chau, and A. Y. Elezzabi, "Experimental and numerical investigation of terahertz transmission through strongly scattering sub-wavelength size spheres," Appl. Phys. Lett. 85, 6284-6286 (2004).
[CrossRef]

Grischkowsky, D.

Holzman, J. F.

J. F. Holzman et al., "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," Appl. Phys. Lett. 87, 2294-2298 (2002).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Mujumdar, S.

S. Mujumdar, K. J. Chau, and A. Y. Elezzabi, "Experimental and numerical investigation of terahertz transmission through strongly scattering sub-wavelength size spheres," Appl. Phys. Lett. 85, 6284-6286 (2004).
[CrossRef]

Ordal, M. A.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Mujumdar, K. J. Chau, and A. Y. Elezzabi, "Experimental and numerical investigation of terahertz transmission through strongly scattering sub-wavelength size spheres," Appl. Phys. Lett. 85, 6284-6286 (2004).
[CrossRef]

J. F. Holzman et al., "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," Appl. Phys. Lett. 87, 2294-2298 (2002).
[CrossRef]

K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys Rev. Lett. (1)

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent plasmonic enhanced terahertz transmission through random metallic media," Phys Rev. Lett. 94,173904 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (1)

K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006).
[CrossRef] [PubMed]

K. J. Chau, Mark Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

Other (4)

T. C. Choy, Effective medium theory: principles and applications (Oxford University Press, New York, 1999).

G. W. Milton, The theory of composites (Cambridge University Press, New York, 2002).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995), Vol. 25.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram illustrating the random composite consisting of polydispersed metallic and dielectric particles. The circled images depict scanning electron microscope images of the dielectric and metal particles and an optical image of the composite. (b) Time-domain terahertz waveforms transmitted through an empty sample cell (reference) and 4.0 mm thick Co/sapphire particle mixtures for Co particles volume fraction, f, varying from 0.0 % to 100 %.

Fig. 2.
Fig. 2.

(a) Illustrative diagram depicting the THz electric field (ETHz ) transmitted through the random metallic-dielectric composite with components polarized parallel (E ) and perpendicular (E ) to the incident polarization and temporal position shifted by a time T relative to the transmission through a dielectric particle sample (upper left). (b) Time-dependent THz pulse intensity envelopes through a 4.0 mm thick sample having various f values for both parallel and perpendicular polarization states. Here, the time axis is measured relative to a 4.0 mm thick pure dielectric ensemble. (c) Power spectra of a THz pulse transmitted through mixtures of metallic and dielectric particles for varying f. The band marks the frequency range which is shared among all the samples of different f.

Fig. 3.
Fig. 3.

(a) Plot of the change (relative to a dielectric ensemble) of the effective refractive index of the random composite as a function of f and frequency. (b) Effective refractive index of the random metallic-dielectric composite measured at 0.23 THz and various f. Notably, within the atypic range the refractive index is larger than either the dielectric (neff d ) or metallic (neff m ) ensembles refractive indices.

Fig. 4.
Fig. 4.

Group velocity (normalized to c) versus the average optical separation between metallic particles. The inset illustrates the average optical separation of metallic particles immersed in a background of a dielectric particle ensemble, where rave is the average radius occupied by a single metallic particle in a volume Vave and a is the average diameter of a metallic particle. The solid line in the figure is not a theoretical curve but a fitted curve.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ns=ρndVdVt+(1fVdVt),

Metrics