Abstract

By tuning wavelengths of the femtosecond pump and probe pulses we mapped the nonlinear absorption of copper-glass nanocomposites within 520 - 620 nm range. At the pump intensity of 3 GW/cm2, the induced transmission rise was as high as 20%. The imaginary part of the third-order optical susceptibility of the nanocomposites as a function of the probe wavelength reproduced well the spectral profile of the surface plasmon resonance in copper. In contrast, the imaginary part of the third-order optical susceptibility as a function of the pump wavelength did not reproduce the plasmon profile being wider than the latter.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Schmid, Clusters and Colloids, From Theory to Applications (VCH, Weinheim 1994); G. Schmid, Nanoparticles, From Theory to Applications (Wiley-VCH, Weinheim 2004).
  2. T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
    [CrossRef]
  3. H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
    [CrossRef]
  4. A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
    [CrossRef]
  5. E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).
  6. H. Garcia, H. Krishna, and R. Kalyanaraman, “Compound figure of merit for photonic applications of metal nanocomposites,” Appl. Phys. Lett. 89(14), 141109 (2006).
    [CrossRef]
  7. I. Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc. 82, 689–695 (1999).
    [CrossRef]
  8. A. Miotello, G. DeMarchi, G. Mattei, and P. Mazzoldi, “Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver-sodium exchanged glasses,” Appl. Phys., A Mater. Sci. Process. 67(5), 527–529 (1998).
    [CrossRef]
  9. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
    [CrossRef]
  10. Y. Takeda, H. Momida, M. Ohnuma, T. Ohno, and N. Kishimoto, “Wavelength dispersion of nonlinear dielectric function of Cu nanoparticle materials,” Opt. Express 16(10), 7471–7480 (2008).
    [CrossRef] [PubMed]
  11. J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
    [CrossRef]
  12. J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995).
    [CrossRef] [PubMed]
  13. V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
    [CrossRef]
  14. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
    [CrossRef]
  15. Q. Darugar, W. Qian, M. A. El-Sayed, and M.-P. Pileni, “Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles,” J. Phys. Chem. B 110(1), 143–149 (2006).
    [CrossRef] [PubMed]
  16. Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
    [CrossRef]
  17. C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
    [CrossRef]
  18. Yu. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353(22-23), 2263–2271 (2007).
    [CrossRef]
  19. M. Halonen, A. A. Lipovskii, and Y. P. Svirko, “Femtosecond absorption dynamics in glass-metal nanocomposites,” Opt. Express 15(11), 6840–6845 (2007).
    [CrossRef] [PubMed]
  20. R. Boyd, Nonlinear Optics (Academic Press, Boston, Mass., 1992).
  21. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10(10), 511–513 (1985).
    [CrossRef] [PubMed]

2009 (1)

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

2008 (1)

2007 (2)

Yu. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353(22-23), 2263–2271 (2007).
[CrossRef]

M. Halonen, A. A. Lipovskii, and Y. P. Svirko, “Femtosecond absorption dynamics in glass-metal nanocomposites,” Opt. Express 15(11), 6840–6845 (2007).
[CrossRef] [PubMed]

2006 (3)

Q. Darugar, W. Qian, M. A. El-Sayed, and M.-P. Pileni, “Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles,” J. Phys. Chem. B 110(1), 143–149 (2006).
[CrossRef] [PubMed]

H. Garcia, H. Krishna, and R. Kalyanaraman, “Compound figure of merit for photonic applications of metal nanocomposites,” Appl. Phys. Lett. 89(14), 141109 (2006).
[CrossRef]

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

2004 (1)

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

2003 (1)

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[CrossRef]

2000 (2)

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[CrossRef]

J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[CrossRef]

1999 (2)

I. Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc. 82, 689–695 (1999).
[CrossRef]

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
[CrossRef]

1998 (3)

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

A. Miotello, G. DeMarchi, G. Mattei, and P. Mazzoldi, “Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver-sodium exchanged glasses,” Appl. Phys., A Mater. Sci. Process. 67(5), 527–529 (1998).
[CrossRef]

T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[CrossRef]

1995 (1)

J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995).
[CrossRef] [PubMed]

1991 (1)

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

1985 (1)

Bigot, J.-Y.

J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[CrossRef]

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
[CrossRef]

T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[CrossRef]

J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995).
[CrossRef] [PubMed]

Broyer, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Cheong, B.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Cho, K. M.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Christofilos, D.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Cottancin, E.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Cregut, O.

J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995).
[CrossRef] [PubMed]

Darugar, Q.

Q. Darugar, W. Qian, M. A. El-Sayed, and M.-P. Pileni, “Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles,” J. Phys. Chem. B 110(1), 143–149 (2006).
[CrossRef] [PubMed]

Daunois, A.

J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[CrossRef]

J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995).
[CrossRef] [PubMed]

DeMarchi, G.

A. Miotello, G. DeMarchi, G. Mattei, and P. Mazzoldi, “Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver-sodium exchanged glasses,” Appl. Phys., A Mater. Sci. Process. 67(5), 527–529 (1998).
[CrossRef]

El-Sayed, M. A.

Q. Darugar, W. Qian, M. A. El-Sayed, and M.-P. Pileni, “Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles,” J. Phys. Chem. B 110(1), 143–149 (2006).
[CrossRef] [PubMed]

Fatti, N. D.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Flytzanis, C.

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[CrossRef]

Garcia, H.

H. Garcia, H. Krishna, and R. Kalyanaraman, “Compound figure of merit for photonic applications of metal nanocomposites,” Appl. Phys. Lett. 89(14), 141109 (2006).
[CrossRef]

Gaudry, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Graener, H.

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

Guille, J.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
[CrossRef]

Halonen, M.

Halte, V.

J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[CrossRef]

Halté, V.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

Hayashi, N.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

Hosono, H.

I. Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc. 82, 689–695 (1999).
[CrossRef]

Jeong, J.-H.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Jun, H.-S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Kaganovskii, Yu.

Yu. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353(22-23), 2263–2271 (2007).
[CrossRef]

Kalyanaraman, R.

H. Garcia, H. Krishna, and R. Kalyanaraman, “Compound figure of merit for photonic applications of metal nanocomposites,” Appl. Phys. Lett. 89(14), 141109 (2006).
[CrossRef]

Kim, D. S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Kim, I. H.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Kim, W. M.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Kishimoto, N.

Krishna, H.

H. Garcia, H. Krishna, and R. Kalyanaraman, “Compound figure of merit for photonic applications of metal nanocomposites,” Appl. Phys. Lett. 89(14), 141109 (2006).
[CrossRef]

Krol, D. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Kumar, G. R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[CrossRef]

Lee, K.-S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Lee, T. S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Lerme, J.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Lipovskii, A.

Yu. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353(22-23), 2263–2271 (2007).
[CrossRef]

Lipovskii, A. A.

Loukakos, P. A.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Mattei, G.

A. Miotello, G. DeMarchi, G. Mattei, and P. Mazzoldi, “Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver-sodium exchanged glasses,” Appl. Phys., A Mater. Sci. Process. 67(5), 527–529 (1998).
[CrossRef]

Mazzoldi, P.

A. Miotello, G. DeMarchi, G. Mattei, and P. Mazzoldi, “Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver-sodium exchanged glasses,” Appl. Phys., A Mater. Sci. Process. 67(5), 527–529 (1998).
[CrossRef]

Merle, J. C.

J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995).
[CrossRef] [PubMed]

Merle, J.-C.

J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[CrossRef]

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
[CrossRef]

Miotello, A.

A. Miotello, G. DeMarchi, G. Mattei, and P. Mazzoldi, “Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver-sodium exchanged glasses,” Appl. Phys., A Mater. Sci. Process. 67(5), 527–529 (1998).
[CrossRef]

Momida, H.

Nakai, I.

I. Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc. 82, 689–695 (1999).
[CrossRef]

Nakamura, A.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

Numako, C.

I. Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc. 82, 689–695 (1999).
[CrossRef]

Ohno, T.

Ohnuma, M.

Omi, S.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

Pellarin, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Perakis, I.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
[CrossRef]

Perakis, I. E.

T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[CrossRef]

Philip, R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[CrossRef]

Pileni, M.-P.

Q. Darugar, W. Qian, M. A. El-Sayed, and M.-P. Pileni, “Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles,” J. Phys. Chem. B 110(1), 143–149 (2006).
[CrossRef] [PubMed]

Pradeep, T.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[CrossRef]

Qian, W.

Q. Darugar, W. Qian, M. A. El-Sayed, and M.-P. Pileni, “Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles,” J. Phys. Chem. B 110(1), 143–149 (2006).
[CrossRef] [PubMed]

Ricard, D.

Rosenbluh, M.

Yu. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353(22-23), 2263–2271 (2007).
[CrossRef]

Roussignol, P.

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[CrossRef]

Sandhyarani, N.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[CrossRef]

Seifert, G.

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

Shahbazyan, T. V.

T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[CrossRef]

Stalmashonak, A.

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

Stepanov, A. L.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[CrossRef]

Svirko, Y. P.

Takeda, Y.

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[CrossRef]

Vallee, F.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Vogel, E. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Voisin, C.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

Weber, M. J.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Yamasaki, K.

I. Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc. 82, 689–695 (1999).
[CrossRef]

Yoon, S.-H.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

Zhurikhina, V.

Yu. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353(22-23), 2263–2271 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

H. Garcia, H. Krishna, and R. Kalyanaraman, “Compound figure of merit for photonic applications of metal nanocomposites,” Appl. Phys. Lett. 89(14), 141109 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Miotello, G. DeMarchi, G. Mattei, and P. Mazzoldi, “Ionic transport model for hydrogen permeation inducing silver nanocluster formation in silver-sodium exchanged glasses,” Appl. Phys., A Mater. Sci. Process. 67(5), 527–529 (1998).
[CrossRef]

Chem. Phys. (1)

J.-Y. Bigot, V. Halte, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[CrossRef]

J. Am. Ceram. Soc. (1)

I. Nakai, C. Numako, H. Hosono, and K. Yamasaki, “Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy,” J. Am. Ceram. Soc. 82, 689–695 (1999).
[CrossRef]

J. Lumin. (1)

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

Yu. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353(22-23), 2263–2271 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

J. Phys. Chem. B (1)

Q. Darugar, W. Qian, M. A. El-Sayed, and M.-P. Pileni, “Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles,” J. Phys. Chem. B 110(1), 143–149 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Glasses (1)

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Phys. Rev. B (3)

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, “Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles,” Phys. Rev. B 69(19), 195416 (2004).
[CrossRef]

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B 60(16), 11738–11746 (1999).
[CrossRef]

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62(19), 13160–13166 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

J.-Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75(25), 4702–4705 (1995).
[CrossRef] [PubMed]

T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81(15), 3120–3123 (1998).
[CrossRef]

Phys. Status Solidi (2)

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, “3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size,” Phys. Status Solidi 203(6), 1211–1216 (2006) (a).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi 238(2), R5–R7 (2003) (b).
[CrossRef]

Other (2)

G. Schmid, Clusters and Colloids, From Theory to Applications (VCH, Weinheim 1994); G. Schmid, Nanoparticles, From Theory to Applications (Wiley-VCH, Weinheim 2004).

R. Boyd, Nonlinear Optics (Academic Press, Boston, Mass., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Pump-probe measurements setup. Inset shows the induced transmission change ΔT/T of the Cu-bulk GMN (pump intensity 3 GW/cm2, λ = 567 nm) as a function of the pump-probe delay.

Fig. 2
Fig. 2

(a) Optical density of the Cu-bulk GMN. The dash line represents contribution of the SPR at nanoparticles density of 1013 cm−3. (b-d) Light-induced transmission change in the Cu-bulk GMN pumped at 567, 610 and 550 nm, respectively, with the pump intensity of 3 GW/cm2. ΔT/T spectra at pump-probe delays 0, 2, 4 and 8 picoseconds are vertically shifted for clarity. Arrows correspond to central wavelength of the pump pulses.

Fig. 3
Fig. 3

Temporal evolution of the transmission spectrum of the Cu-bulk nanocomposite during first 2 ps after excitation by 50 fs long pulse at λ = 567 nm and intensity of 3 GW/cm2. (a) Temporal profile of the pump-induced transmission change at 567 nm. (b) Wavelength dependence of ΔT/T at different pump-probe delays (in picosecunds). The curves are vertically shifted for clarity; dot line corresponds to the pump wavelength.

Fig. 4
Fig. 4

(a) Contour plot of the Im{χ(3)} in the λpump (horizontal) and λprobe (vertical) coordinates. The value of the third-order susceptibility is in 10−13 esu units. (b) Im{χ(3)} as a function of λpump at λprobe = 567 nm (solid line). (c) Im{χ(3)} as a function of λpump at 567 nm (1), 555 nm (2), 578 nm (3), 610 nm (4) and 522 nm (5). (d) Im{χ(3)} as a function of λprobe at λpump = 567 nm (solid line). The SPR spectral shape is shown by dash line.

Fig. 5
Fig. 5

(a) Wavelength dependence of the optical density of the Cu-surf GMN (solid line). The dash line shows the surface plasmon contribution to the optical density calculated from the Maxwell-Garnett model. Arrow indicates pump wavelength (567 nm) in the pump-probe experiment. (b) Wavelength dependence of the light-induced transmission in the Cu-surf GMN measured with pump intensity of 1 GW/cm2 at 567 nm. ΔT/T spectra at different delays between pump and probe pulses (shown in picoseconds) are vertically shifted for clarity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δα=48π2Im{χ(3)}|E(ωpump)|2λproben,
Im{χ(3)}=(ΔT/T)Lλprobecn296π31|Ipump|2,
χ(3)=f|Lm(ωpump)|2[Lm(ωprobe)]2χm(3),

Metrics