Abstract

We show theoretically that nearly indistinguishable photons can be generated with non-identical semiconductor-based sources. The use of virtual Raman transitions and the optimization of the external driving fields increases the tolerance to spectral inhomogeneity to the meV energy range. A trade-off emerges between photon indistinguishability and efficiency in the photon-generation process. Linear (quadratic) dependence of the coincidence probability within the Hong-Ou-Mandel setup is found with respect to the dephasing (relaxation) rate in the semiconductor sources.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cirac, Zoller , Kimble, and Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network", Phys. Rev. Lett. 78, 3221 (1997).
  2. Kok, Munro , Nemoto, Ralph , Dowling, and Milburn, "Linear optical quantum computing with photonic qubits", Rev. Mod. Phys. 79, 135 (2007).
  3. Keller, Lange , Hayasaka, Lange , and Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system", Nature 431, 1075 (2004).
    [PubMed]
  4. McKeever, Boca , Boozer, Miller , Miller, Buck , Kuzmich, and Kimble, "Deterministic Generation of Single Photon from One Atom Trapped in a Cavity", Science 303, 1992 (2004).
    [PubMed]
  5. Darquié, Jones, Dingjan, Beugnon, Bergamini, Sortais, Messin, Browaeys, and Grangier, "Controlled Single- Photon Emission froma a Single Trapped Two-Level Atom", Science 309, 454 (2005).
    [PubMed]
  6. Beugnon, Jones , Dingjan, Darqui’e, Messin, Browaeys, and Grangier, "Quantum interference between two single photons emitted by independently trapped atoms", Nature 440, 779 (2006).
    [PubMed]
  7. Martini, Giuseppe , and Marrocco, "Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap", Phys. Rev. Lett. 76, 900 (1996).
    [PubMed]
  8. Brunel, Lounis , Tamarat, and Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence", Phys. Rev. Lett. 83, 2722 (1999).
  9. Lounis and Moerner, "Single photons on demand from a single molecule at room temperature", Nature 407, 491 (2000).
    [PubMed]
  10. Kurtsiefer, Mayer , Zarda, and Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000).
    [PubMed]
  11. Michler, Mason , Carson, Strouse , Buratto, and Imamoglu, "Quantum correlation among photons froma a single quantum dot at room temperature", Nature 406, 968 (2000).
    [PubMed]
  12. Moreau, Robert , Manin, Thierry-Mieg , Gerard, and Abram, "Quantum Cascade of Photons in Semiconductor Quantum Dots", Phys. Rev. Lett. 87, 183601 (2001).
  13. Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).
  14. Santori, Pelton , Solomon, Dale , and Yamamoto, "Triggered Single Photons from a Quantum Dot", Phys. Rev. Lett. 86, 1502 (2001).
    [PubMed]
  15. Santori, Fattal , Vuckovic, Solomon , and Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419, 594 (2002).
    [PubMed]
  16. Zrenner, "A close look on single quantum dots", J. Chem. Phys. 112, 7790 (2000).
  17. Badolato, Hennessy , Atature, Dreyser , Hu, Petroff , and Imamoglu, "Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes", Science 308, 1158 (2005).
    [PubMed]
  18. Scully and Zubairy, in Quantum optics (Cambridge University Press, Cambridge, 1997).
  19. Kiraz, Atature , and Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing", Phys. Rev. A 69, 32305 (2004).
  20. Troiani, Perea , and Tejedor, "Analysis of the photon indistinguishability in incoherently excited quantum dots", Phys. Rev. B 73, 035316 (2006).
  21. Sheng and Leburton, "Spontaneous localization in InAs/GaAs self-assembled quantum-dot molecules", Appl. Phys. Lett. 81, 4449 (2002).
  22. Bester, Shumway , and Zunger, "Theory of Excitonic Spectra and Entenglement Engineering in Dot Molecules", Phys. Rev. Lett. 93, 47401 (2004).
  23. The first excited charged-exciton state 4 has to be included, for its energy separation from 3 is typically of a few meV [29], comparable to the detunings δL and δc.
  24. Hong, Ou , and Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett. 59, 2044 (1987).
    [PubMed]
  25. Michalewicz Genetic Algorithms + Data Structures = Evolutionary Programming (Springer-Verlag, Berlin, 1992).
  26. For simplicity, we keep ωA 34 =ωB 34 = 5meV and ωA 12 =ωB 12 = 25meV. Possible differences between the bondingantibonding splittings of the two AMs can be trivially compensated by adjusting ωA L ?ωB L.
  27. Zanardi and Rossi, "Quantum Information in Semiconductors: Noiseless Encoding in a Quantum-Dot Array", Phys. Rev. Lett. 81, 4752 (1998).
  28. Bertoni, Rontani , Goldoni, Troiani , and Molinari, "Field-controlled suppression of photon-induced transitions in coupled quantum dots", Appl. Phys. Lett. 85, 4729 (2004).
  29. Krenner, Clark , Nakaoka, Bichler , Scheurer, Abstreiter , and Finley, "Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule", Phys. Rev. Lett. 97, 076403 (2006).
    [PubMed]
  30. Fern’ee, Rubinsztein-Dunlop , and Milburn, "Improving single-photon sources with Stark tuning", Phys. Rev. A 75, 043815 (2007).
  31. Troiani, Wilson-Rae , and Tejedor, "All-optical nondemolition measurement of single hole spin in a quantum-dot molecule", Appl. Phys. Lett. 90, 144103 (2007).
  32. Flindt, Sorensen , Lukin, and Taylor, "Spin-Photon Entangling Diode", Phys. Rev. Lett. 98, 240501 (2007).
    [PubMed]
  33. Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002).
    [PubMed]

2007

Kok, Munro , Nemoto, Ralph , Dowling, and Milburn, "Linear optical quantum computing with photonic qubits", Rev. Mod. Phys. 79, 135 (2007).

Fern’ee, Rubinsztein-Dunlop , and Milburn, "Improving single-photon sources with Stark tuning", Phys. Rev. A 75, 043815 (2007).

Troiani, Wilson-Rae , and Tejedor, "All-optical nondemolition measurement of single hole spin in a quantum-dot molecule", Appl. Phys. Lett. 90, 144103 (2007).

Flindt, Sorensen , Lukin, and Taylor, "Spin-Photon Entangling Diode", Phys. Rev. Lett. 98, 240501 (2007).
[PubMed]

2006

Krenner, Clark , Nakaoka, Bichler , Scheurer, Abstreiter , and Finley, "Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule", Phys. Rev. Lett. 97, 076403 (2006).
[PubMed]

Beugnon, Jones , Dingjan, Darqui’e, Messin, Browaeys, and Grangier, "Quantum interference between two single photons emitted by independently trapped atoms", Nature 440, 779 (2006).
[PubMed]

Troiani, Perea , and Tejedor, "Analysis of the photon indistinguishability in incoherently excited quantum dots", Phys. Rev. B 73, 035316 (2006).

2005

Badolato, Hennessy , Atature, Dreyser , Hu, Petroff , and Imamoglu, "Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes", Science 308, 1158 (2005).
[PubMed]

Darquié, Jones, Dingjan, Beugnon, Bergamini, Sortais, Messin, Browaeys, and Grangier, "Controlled Single- Photon Emission froma a Single Trapped Two-Level Atom", Science 309, 454 (2005).
[PubMed]

2004

Keller, Lange , Hayasaka, Lange , and Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system", Nature 431, 1075 (2004).
[PubMed]

McKeever, Boca , Boozer, Miller , Miller, Buck , Kuzmich, and Kimble, "Deterministic Generation of Single Photon from One Atom Trapped in a Cavity", Science 303, 1992 (2004).
[PubMed]

Kiraz, Atature , and Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing", Phys. Rev. A 69, 32305 (2004).

Bertoni, Rontani , Goldoni, Troiani , and Molinari, "Field-controlled suppression of photon-induced transitions in coupled quantum dots", Appl. Phys. Lett. 85, 4729 (2004).

Bester, Shumway , and Zunger, "Theory of Excitonic Spectra and Entenglement Engineering in Dot Molecules", Phys. Rev. Lett. 93, 47401 (2004).

2002

Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002).
[PubMed]

Sheng and Leburton, "Spontaneous localization in InAs/GaAs self-assembled quantum-dot molecules", Appl. Phys. Lett. 81, 4449 (2002).

Santori, Fattal , Vuckovic, Solomon , and Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419, 594 (2002).
[PubMed]

2001

Moreau, Robert , Manin, Thierry-Mieg , Gerard, and Abram, "Quantum Cascade of Photons in Semiconductor Quantum Dots", Phys. Rev. Lett. 87, 183601 (2001).

Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).

Santori, Pelton , Solomon, Dale , and Yamamoto, "Triggered Single Photons from a Quantum Dot", Phys. Rev. Lett. 86, 1502 (2001).
[PubMed]

2000

Zrenner, "A close look on single quantum dots", J. Chem. Phys. 112, 7790 (2000).

Lounis and Moerner, "Single photons on demand from a single molecule at room temperature", Nature 407, 491 (2000).
[PubMed]

Kurtsiefer, Mayer , Zarda, and Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000).
[PubMed]

Michler, Mason , Carson, Strouse , Buratto, and Imamoglu, "Quantum correlation among photons froma a single quantum dot at room temperature", Nature 406, 968 (2000).
[PubMed]

1999

Brunel, Lounis , Tamarat, and Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence", Phys. Rev. Lett. 83, 2722 (1999).

1998

Zanardi and Rossi, "Quantum Information in Semiconductors: Noiseless Encoding in a Quantum-Dot Array", Phys. Rev. Lett. 81, 4752 (1998).

1997

Cirac, Zoller , Kimble, and Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network", Phys. Rev. Lett. 78, 3221 (1997).

1996

Martini, Giuseppe , and Marrocco, "Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap", Phys. Rev. Lett. 76, 900 (1996).
[PubMed]

1987

Hong, Ou , and Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett. 59, 2044 (1987).
[PubMed]

Atature, Hennessy

Badolato, Hennessy , Atature, Dreyser , Hu, Petroff , and Imamoglu, "Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes", Science 308, 1158 (2005).
[PubMed]

Badolato,

Badolato, Hennessy , Atature, Dreyser , Hu, Petroff , and Imamoglu, "Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes", Science 308, 1158 (2005).
[PubMed]

Bertoni,

Bertoni, Rontani , Goldoni, Troiani , and Molinari, "Field-controlled suppression of photon-induced transitions in coupled quantum dots", Appl. Phys. Lett. 85, 4729 (2004).

Bester,

Bester, Shumway , and Zunger, "Theory of Excitonic Spectra and Entenglement Engineering in Dot Molecules", Phys. Rev. Lett. 93, 47401 (2004).

Beugnon,

Beugnon, Jones , Dingjan, Darqui’e, Messin, Browaeys, and Grangier, "Quantum interference between two single photons emitted by independently trapped atoms", Nature 440, 779 (2006).
[PubMed]

Boozer, Boca

McKeever, Boca , Boozer, Miller , Miller, Buck , Kuzmich, and Kimble, "Deterministic Generation of Single Photon from One Atom Trapped in a Cavity", Science 303, 1992 (2004).
[PubMed]

Brunel,

Brunel, Lounis , Tamarat, and Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence", Phys. Rev. Lett. 83, 2722 (1999).

Carson, Mason

Michler, Mason , Carson, Strouse , Buratto, and Imamoglu, "Quantum correlation among photons froma a single quantum dot at room temperature", Nature 406, 968 (2000).
[PubMed]

Cirac,

Cirac, Zoller , Kimble, and Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network", Phys. Rev. Lett. 78, 3221 (1997).

Cortez,

Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002).
[PubMed]

Fernée,

Fern’ee, Rubinsztein-Dunlop , and Milburn, "Improving single-photon sources with Stark tuning", Phys. Rev. A 75, 043815 (2007).

Ferreira, Vosisin

Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002).
[PubMed]

Flindt,

Flindt, Sorensen , Lukin, and Taylor, "Spin-Photon Entangling Diode", Phys. Rev. Lett. 98, 240501 (2007).
[PubMed]

Goldoni, Rontani

Bertoni, Rontani , Goldoni, Troiani , and Molinari, "Field-controlled suppression of photon-induced transitions in coupled quantum dots", Appl. Phys. Lett. 85, 4729 (2004).

Goobar, Tsegaye

Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).

Hayasaka, Lange

Keller, Lange , Hayasaka, Lange , and Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system", Nature 431, 1075 (2004).
[PubMed]

Hong,

Hong, Ou , and Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett. 59, 2044 (1987).
[PubMed]

Hu, Dreyser

Badolato, Hennessy , Atature, Dreyser , Hu, Petroff , and Imamoglu, "Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes", Science 308, 1158 (2005).
[PubMed]

Jeppesen, Panev

Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).

Jonsson, Blom

Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).

Keller,

Keller, Lange , Hayasaka, Lange , and Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system", Nature 431, 1075 (2004).
[PubMed]

Kiraz,

Kiraz, Atature , and Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing", Phys. Rev. A 69, 32305 (2004).

Kok,

Kok, Munro , Nemoto, Ralph , Dowling, and Milburn, "Linear optical quantum computing with photonic qubits", Rev. Mod. Phys. 79, 135 (2007).

Krenner,

Krenner, Clark , Nakaoka, Bichler , Scheurer, Abstreiter , and Finley, "Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule", Phys. Rev. Lett. 97, 076403 (2006).
[PubMed]

Kurtsiefer,

Kurtsiefer, Mayer , Zarda, and Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000).
[PubMed]

Laurent, Krebs

Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002).
[PubMed]

Manin, Robert

Moreau, Robert , Manin, Thierry-Mieg , Gerard, and Abram, "Quantum Cascade of Photons in Semiconductor Quantum Dots", Phys. Rev. Lett. 87, 183601 (2001).

Marie, Senes

Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002).
[PubMed]

Martini,

Martini, Giuseppe , and Marrocco, "Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap", Phys. Rev. Lett. 76, 900 (1996).
[PubMed]

McKeever,

McKeever, Boca , Boozer, Miller , Miller, Buck , Kuzmich, and Kimble, "Deterministic Generation of Single Photon from One Atom Trapped in a Cavity", Science 303, 1992 (2004).
[PubMed]

Michler,

Michler, Mason , Carson, Strouse , Buratto, and Imamoglu, "Quantum correlation among photons froma a single quantum dot at room temperature", Nature 406, 968 (2000).
[PubMed]

Miller, Miller

McKeever, Boca , Boozer, Miller , Miller, Buck , Kuzmich, and Kimble, "Deterministic Generation of Single Photon from One Atom Trapped in a Cavity", Science 303, 1992 (2004).
[PubMed]

Moreau,

Moreau, Robert , Manin, Thierry-Mieg , Gerard, and Abram, "Quantum Cascade of Photons in Semiconductor Quantum Dots", Phys. Rev. Lett. 87, 183601 (2001).

Nakaoka, Clark

Krenner, Clark , Nakaoka, Bichler , Scheurer, Abstreiter , and Finley, "Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule", Phys. Rev. Lett. 97, 076403 (2006).
[PubMed]

Nemoto, Munro

Kok, Munro , Nemoto, Ralph , Dowling, and Milburn, "Linear optical quantum computing with photonic qubits", Rev. Mod. Phys. 79, 135 (2007).

Santori,

Santori, Fattal , Vuckovic, Solomon , and Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419, 594 (2002).
[PubMed]

Santori, Pelton , Solomon, Dale , and Yamamoto, "Triggered Single Photons from a Quantum Dot", Phys. Rev. Lett. 86, 1502 (2001).
[PubMed]

Scheurer, Bichler

Krenner, Clark , Nakaoka, Bichler , Scheurer, Abstreiter , and Finley, "Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule", Phys. Rev. Lett. 97, 076403 (2006).
[PubMed]

Solomon, Pelton

Santori, Pelton , Solomon, Dale , and Yamamoto, "Triggered Single Photons from a Quantum Dot", Phys. Rev. Lett. 86, 1502 (2001).
[PubMed]

Troiani,

Troiani, Wilson-Rae , and Tejedor, "All-optical nondemolition measurement of single hole spin in a quantum-dot molecule", Appl. Phys. Lett. 90, 144103 (2007).

Troiani, Perea , and Tejedor, "Analysis of the photon indistinguishability in incoherently excited quantum dots", Phys. Rev. B 73, 035316 (2006).

Vuckovic, Fattal

Santori, Fattal , Vuckovic, Solomon , and Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419, 594 (2002).
[PubMed]

Zwiller,

Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).

Appl. Phys. Lett.

Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).

Sheng and Leburton, "Spontaneous localization in InAs/GaAs self-assembled quantum-dot molecules", Appl. Phys. Lett. 81, 4449 (2002).

Bertoni, Rontani , Goldoni, Troiani , and Molinari, "Field-controlled suppression of photon-induced transitions in coupled quantum dots", Appl. Phys. Lett. 85, 4729 (2004).

Troiani, Wilson-Rae , and Tejedor, "All-optical nondemolition measurement of single hole spin in a quantum-dot molecule", Appl. Phys. Lett. 90, 144103 (2007).

J. Chem. Phys.

Zrenner, "A close look on single quantum dots", J. Chem. Phys. 112, 7790 (2000).

Nature

Michler, Mason , Carson, Strouse , Buratto, and Imamoglu, "Quantum correlation among photons froma a single quantum dot at room temperature", Nature 406, 968 (2000).
[PubMed]

Keller, Lange , Hayasaka, Lange , and Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system", Nature 431, 1075 (2004).
[PubMed]

Beugnon, Jones , Dingjan, Darqui’e, Messin, Browaeys, and Grangier, "Quantum interference between two single photons emitted by independently trapped atoms", Nature 440, 779 (2006).
[PubMed]

Lounis and Moerner, "Single photons on demand from a single molecule at room temperature", Nature 407, 491 (2000).
[PubMed]

Santori, Fattal , Vuckovic, Solomon , and Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419, 594 (2002).
[PubMed]

Phys. Rev. A

Fern’ee, Rubinsztein-Dunlop , and Milburn, "Improving single-photon sources with Stark tuning", Phys. Rev. A 75, 043815 (2007).

Kiraz, Atature , and Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing", Phys. Rev. A 69, 32305 (2004).

Phys. Rev. B

Troiani, Perea , and Tejedor, "Analysis of the photon indistinguishability in incoherently excited quantum dots", Phys. Rev. B 73, 035316 (2006).

Phys. Rev. Lett.

Moreau, Robert , Manin, Thierry-Mieg , Gerard, and Abram, "Quantum Cascade of Photons in Semiconductor Quantum Dots", Phys. Rev. Lett. 87, 183601 (2001).

Santori, Pelton , Solomon, Dale , and Yamamoto, "Triggered Single Photons from a Quantum Dot", Phys. Rev. Lett. 86, 1502 (2001).
[PubMed]

Kurtsiefer, Mayer , Zarda, and Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000).
[PubMed]

Martini, Giuseppe , and Marrocco, "Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap", Phys. Rev. Lett. 76, 900 (1996).
[PubMed]

Brunel, Lounis , Tamarat, and Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence", Phys. Rev. Lett. 83, 2722 (1999).

Cirac, Zoller , Kimble, and Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network", Phys. Rev. Lett. 78, 3221 (1997).

Flindt, Sorensen , Lukin, and Taylor, "Spin-Photon Entangling Diode", Phys. Rev. Lett. 98, 240501 (2007).
[PubMed]

Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002).
[PubMed]

Zanardi and Rossi, "Quantum Information in Semiconductors: Noiseless Encoding in a Quantum-Dot Array", Phys. Rev. Lett. 81, 4752 (1998).

Krenner, Clark , Nakaoka, Bichler , Scheurer, Abstreiter , and Finley, "Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule", Phys. Rev. Lett. 97, 076403 (2006).
[PubMed]

Bester, Shumway , and Zunger, "Theory of Excitonic Spectra and Entenglement Engineering in Dot Molecules", Phys. Rev. Lett. 93, 47401 (2004).

Hong, Ou , and Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett. 59, 2044 (1987).
[PubMed]

Rev. Mod. Phys.

Kok, Munro , Nemoto, Ralph , Dowling, and Milburn, "Linear optical quantum computing with photonic qubits", Rev. Mod. Phys. 79, 135 (2007).

Science

McKeever, Boca , Boozer, Miller , Miller, Buck , Kuzmich, and Kimble, "Deterministic Generation of Single Photon from One Atom Trapped in a Cavity", Science 303, 1992 (2004).
[PubMed]

Darquié, Jones, Dingjan, Beugnon, Bergamini, Sortais, Messin, Browaeys, and Grangier, "Controlled Single- Photon Emission froma a Single Trapped Two-Level Atom", Science 309, 454 (2005).
[PubMed]

Badolato, Hennessy , Atature, Dreyser , Hu, Petroff , and Imamoglu, "Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes", Science 308, 1158 (2005).
[PubMed]

Other

Scully and Zubairy, in Quantum optics (Cambridge University Press, Cambridge, 1997).

Michalewicz Genetic Algorithms + Data Structures = Evolutionary Programming (Springer-Verlag, Berlin, 1992).

For simplicity, we keep ωA 34 =ωB 34 = 5meV and ωA 12 =ωB 12 = 25meV. Possible differences between the bondingantibonding splittings of the two AMs can be trivially compensated by adjusting ωA L ?ωB L.

The first excited charged-exciton state 4 has to be included, for its energy separation from 3 is typically of a few meV [29], comparable to the detunings δL and δc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(Color online) Emission scheme of indistinguishable photons from non-identical SPSs. Each source (A/B) consists of an AM (gray), doped with an excess electron (red/blue), and coupled to an optical MC (black). The effect on the photon wavepackets (green) of the differences between A and B, in terms of energies and oscillator strengths of the optical transitions, are compensated by properly tailoring the exciting laser pulses (straight arrows).

Fig. 2.
Fig. 2.

(Color online) (a) Relevant level scheme for each negatively-charged AM. The levels 1 and 2 correspond to the bonding and antibonding states of the excess electron; these are optically coupled to the two lowest charged exciton states 3 and 4. The off-resonant laser pulse (ωL ) induces a virtual Raman transition from 1 to 2; this process results in the creation and emission of a photon from the fundamental mode of the MC (ωc ). (b) Schematics of the Hong-Ou-Mandel setup. The photons are emitted by the two sources A and B in the input modes of a balanced beam-splitter (BS), whose output modes are coupled to the photodetectors C and D.

Fig. 3.
Fig. 3.

(Color online) Maximized fitness function M as a function of the differences between the A and B sources in terms of frequencies (Δ AB =ωA 32 B 32) and oscillator strengths (gABgB jk/gA jk ) of the optical transitions. The remaining parameters are: Γ nr A/B r =10-3 ps-1, γA/B j =10-2 ps-1, κ A/B =10-1 ps-1, gA jk =0.120meV.

Fig. 4.
Fig. 4.

(Color online) (a) Dependence of the maximum fitness function M on the 1/γ (upper axis, green squares) and Γ21 (lower axis, red triangles), being γ and Γ12 the dephasing and non-radiative relaxation rates, respectively; gAB =1 and Δ AB =1.25 meV. The green (red) dotted line represents the best fit of FM linear (quadratic) in γ (Γ21). (b) M as a function of the threshold Pt e in the photon-emission probability for gAB =1, with Δ AB =0 and 1.5 meV.

Fig. 5.
Fig. 5.

(Color online) (a) Dependence of F 2/F 1=1-PCD on the shift of the cavity and laser frequencies from their optimized values, Δω A/B α ≡ω A/B α A/B,0α, for Δ AB =0 (red) and Δ AB =1.5meV (gray), with gAB =0.88. Solid, dashed and dotted lines correspond respectively to: α=c; α=L, β=A; α=L, β=B. (b) Photon-emission probabilities, PA e (solid lines) and PB e (dotted), as a function of Δωc , for Δ AB =0 (red) and Δ AB =1.5meV (gray), with gAB =0.88.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

HMC = j=1,2k=3,4gjk(σjka+aσjk),
HL=12p=1NLk=1,2k=3,4Ωjkp(t)(ejktpσjk+H.c.),
= jL (γjPj)+j,kL(Γjkσjk)+L(κa),
= (F2F1)g(PeA,PeB).

Metrics